{"title":"一致超图中的解析连通性:性质与计算","authors":"Chunfeng Cui, Ziyan Luo, L. Qi, Hong Yan","doi":"10.1002/nla.2468","DOIUrl":null,"url":null,"abstract":"The analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analytic connectivity in uniform hypergraphs: Properties and computation\",\"authors\":\"Chunfeng Cui, Ziyan Luo, L. Qi, Hong Yan\",\"doi\":\"10.1002/nla.2468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2468\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2468","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The analytic connectivity in uniform hypergraphs: Properties and computation
The analytic connectivity (AC), defined via solving a series of constrained polynomial optimization problems, serves as a measure of connectivity in hypergraphs. How to compute such a quantity efficiently is important in practice and of theoretical challenge as well due to the non‐convex and combinatorial features in its definition. In this article, we first perform a careful analysis of several widely used structured hypergraphs in terms of their properties and heuristic upper bounds of ACs. We then present an affine‐scaling method to compute some upper bounds of ACs for uniform hypergraphs. To testify the tightness of the obtained upper bounds, two possible approaches via the Pólya theorem and semidefinite programming respectively are also proposed to verify the lower bounds generated by the obtained upper bounds minus a small gap. Numerical experiments on synthetic datasets are reported to demonstrate the efficiency of our proposed method. Further, we apply our method in hypergraphs constructed from social networks and text analysis to detect the network connectivity and rank the keywords, respectively.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.