一种通用的gm/Id温度感知设计方法,使用180 nm CMOS高达250°C

Q4 Engineering
Joao Roberto Raposo de Oliveira Martins, Francisco de Oliveira Alves, Pietro Maris Ferreira
{"title":"一种通用的gm/Id温度感知设计方法,使用180 nm CMOS高达250°C","authors":"Joao Roberto Raposo de Oliveira Martins, Francisco de Oliveira Alves, Pietro Maris Ferreira","doi":"10.29292/jics.v17i1.552","DOIUrl":null,"url":null,"abstract":" The advent of the Internet-of-Things brings new challenges in circuit design. The presence of circuits and sensors in harsh environments brought the need for methodologies that account for them. Since the beginning of the transistors, the temperature is known for having a significant impact on performance, and even though very low temperature sensitivity circuits have been proposed, no general methodology for designing them exists. This paper proposes a general gm over Id technique for designing temperature-aware circuits that can be used either on measurement data, analytically, or based on simulation models. This model is validated using measurements up to 250°C of X-FAB XT018 transistors and later with a circuit design example.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A General gm/Id Temperature-Aware Design Methodology Using 180 nm CMOS up to 250 °C\",\"authors\":\"Joao Roberto Raposo de Oliveira Martins, Francisco de Oliveira Alves, Pietro Maris Ferreira\",\"doi\":\"10.29292/jics.v17i1.552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" The advent of the Internet-of-Things brings new challenges in circuit design. The presence of circuits and sensors in harsh environments brought the need for methodologies that account for them. Since the beginning of the transistors, the temperature is known for having a significant impact on performance, and even though very low temperature sensitivity circuits have been proposed, no general methodology for designing them exists. This paper proposes a general gm over Id technique for designing temperature-aware circuits that can be used either on measurement data, analytically, or based on simulation models. This model is validated using measurements up to 250°C of X-FAB XT018 transistors and later with a circuit design example.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i1.552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i1.552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

物联网的出现给电路设计带来了新的挑战。电路和传感器在恶劣环境中的存在带来了对解决这些问题的方法的需求。自晶体管问世以来,已知温度对性能有重大影响,尽管已经提出了非常低的温度敏感度电路,但还不存在设计它们的通用方法。本文提出了一种用于设计温度感知电路的通用gm over Id技术,该技术可以用于测量数据、分析或基于仿真模型。该模型通过X-FAB XT018晶体管高达250°C的测量值进行了验证,随后通过电路设计示例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A General gm/Id Temperature-Aware Design Methodology Using 180 nm CMOS up to 250 °C
 The advent of the Internet-of-Things brings new challenges in circuit design. The presence of circuits and sensors in harsh environments brought the need for methodologies that account for them. Since the beginning of the transistors, the temperature is known for having a significant impact on performance, and even though very low temperature sensitivity circuits have been proposed, no general methodology for designing them exists. This paper proposes a general gm over Id technique for designing temperature-aware circuits that can be used either on measurement data, analytically, or based on simulation models. This model is validated using measurements up to 250°C of X-FAB XT018 transistors and later with a circuit design example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信