挤出发泡法制备纳米复合聚乙烯泡沫材料的研究

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS
M. Rostami, T. Azdast, R. Hasanzadeh, M. Moradian
{"title":"挤出发泡法制备纳米复合聚乙烯泡沫材料的研究","authors":"M. Rostami, T. Azdast, R. Hasanzadeh, M. Moradian","doi":"10.1177/02624893211040949","DOIUrl":null,"url":null,"abstract":"Foaming a polymer not only turns it into a lightweight material but also gives some special properties to it. However, the most important issue is controlling the foaming process to achieve a desirable structure with high cell density and low relative density. In the present study, the extrusion foaming process of polyethylene was studied through stepwise amendments. An innovative extrusion system was designed and implemented to produce extrusion foams under different material and process conditions using N2 as blowing agent. In the first step, the final cooling condition was investigated. The air-cooling condition led to a higher cell density/lower cell size compared to the water-cooling condition although a higher relative density was obtained. In the second step, the effects of the addition of talc and the synergetic effect of talc/nanoclay at different contents were investigated in detail. The hybrid of talc/nanoclay had a noticeably improving effect on the cellular structure. In the third step, the effects of processing parameters including the die temperature and screw speed were studied on the foam properties. Finally, up to 49.4% decrease in the relative density of samples was observed, also cell densities up to 2.5 × 104 cell/cm3 and cell sizes as small as 280 µm were achieved.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A study on fabrication of nanocomposite polyethylene foam through extrusion foaming procedure\",\"authors\":\"M. Rostami, T. Azdast, R. Hasanzadeh, M. Moradian\",\"doi\":\"10.1177/02624893211040949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foaming a polymer not only turns it into a lightweight material but also gives some special properties to it. However, the most important issue is controlling the foaming process to achieve a desirable structure with high cell density and low relative density. In the present study, the extrusion foaming process of polyethylene was studied through stepwise amendments. An innovative extrusion system was designed and implemented to produce extrusion foams under different material and process conditions using N2 as blowing agent. In the first step, the final cooling condition was investigated. The air-cooling condition led to a higher cell density/lower cell size compared to the water-cooling condition although a higher relative density was obtained. In the second step, the effects of the addition of talc and the synergetic effect of talc/nanoclay at different contents were investigated in detail. The hybrid of talc/nanoclay had a noticeably improving effect on the cellular structure. In the third step, the effects of processing parameters including the die temperature and screw speed were studied on the foam properties. Finally, up to 49.4% decrease in the relative density of samples was observed, also cell densities up to 2.5 × 104 cell/cm3 and cell sizes as small as 280 µm were achieved.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893211040949\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211040949","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 14

摘要

使聚合物发泡不仅使其成为一种轻质材料,而且使其具有一些特殊的性能。然而,最重要的问题是控制发泡过程,以达到理想的高细胞密度和低相对密度的结构。采用逐步修正的方法对聚乙烯的挤出发泡过程进行了研究。设计并实现了以N2为发泡剂,在不同材料和工艺条件下生产挤出泡沫的创新挤出系统。在第一步中,研究了最终冷却条件。与水冷条件相比,风冷条件导致电池密度更高/电池尺寸更小,尽管获得了更高的相对密度。第二步,详细研究了滑石添加量的影响以及不同含量滑石/纳米粘土的协同效应。滑石/纳米粘土的杂化对细胞结构有明显的改善作用。第三步,研究了模具温度和螺杆转速等工艺参数对泡沫性能的影响。最后,观察到样品的相对密度降低了49.4%,细胞密度达到2.5 × 104 cells /cm3,细胞尺寸小至280µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on fabrication of nanocomposite polyethylene foam through extrusion foaming procedure
Foaming a polymer not only turns it into a lightweight material but also gives some special properties to it. However, the most important issue is controlling the foaming process to achieve a desirable structure with high cell density and low relative density. In the present study, the extrusion foaming process of polyethylene was studied through stepwise amendments. An innovative extrusion system was designed and implemented to produce extrusion foams under different material and process conditions using N2 as blowing agent. In the first step, the final cooling condition was investigated. The air-cooling condition led to a higher cell density/lower cell size compared to the water-cooling condition although a higher relative density was obtained. In the second step, the effects of the addition of talc and the synergetic effect of talc/nanoclay at different contents were investigated in detail. The hybrid of talc/nanoclay had a noticeably improving effect on the cellular structure. In the third step, the effects of processing parameters including the die temperature and screw speed were studied on the foam properties. Finally, up to 49.4% decrease in the relative density of samples was observed, also cell densities up to 2.5 × 104 cell/cm3 and cell sizes as small as 280 µm were achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信