奇数扩展逻辑家族:属性,回归,模拟和应用

Q4 Mathematics
G. Cordeiro, F. Prataviera, E. Ortega, R. Vila, Erica V. Nogueira
{"title":"奇数扩展逻辑家族:属性,回归,模拟和应用","authors":"G. Cordeiro, F. Prataviera, E. Ortega, R. Vila, Erica V. Nogueira","doi":"10.3233/mas-221364","DOIUrl":null,"url":null,"abstract":"We define the odd extended log-logistic-G family, and obtain some of its statistical properties. We construct a new extended regression based on the logarithm of the proposed distribution, which can be better than other known regressions to fit real data.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The odd extended log-logistic family: Properties, regression, simulations and applications\",\"authors\":\"G. Cordeiro, F. Prataviera, E. Ortega, R. Vila, Erica V. Nogueira\",\"doi\":\"10.3233/mas-221364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the odd extended log-logistic-G family, and obtain some of its statistical properties. We construct a new extended regression based on the logarithm of the proposed distribution, which can be better than other known regressions to fit real data.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-221364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-221364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

定义了奇扩展logistic- logistic- g族,得到了它的一些统计性质。我们基于所提出的分布的对数构造了一个新的扩展回归,它可以比其他已知的回归更好地拟合实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The odd extended log-logistic family: Properties, regression, simulations and applications
We define the odd extended log-logistic-G family, and obtain some of its statistical properties. We construct a new extended regression based on the logarithm of the proposed distribution, which can be better than other known regressions to fit real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信