{"title":"关于整数值多项式的导数","authors":"Bakir Farhi","doi":"10.7169/facm/1786","DOIUrl":null,"url":null,"abstract":"In this paper, we study the derivatives of an integer-valued polynomial of a given degree. Denoting by $E_n$ the set of the integer-valued polynomials with degree $\\leq n$, we show that the smallest positive integer $c_n$ satisfying the property: $\\forall P \\in E_n, c_n P' \\in E_n$ is $c_n = \\mathrm{lcm}(1 , 2 , \\dots , n)$. As an application, we deduce an easy proof of the well-known inequality $\\mathrm{lcm}(1 , 2 , \\dots , n) \\geq 2^{n - 1}$ ($\\forall n \\geq 1$). In the second part of the paper, we generalize our result for the derivative of a given order $k$ and then we give two divisibility properties for the obtained numbers $c_{n , k}$ (generalizing the $c_n$'s). Leaning on this study, we conclude the paper by determining, for a given natural number $n$, the smallest positive integer $\\lambda_n$ satisfying the property: $\\forall P \\in E_n$, $\\forall k \\in \\mathbb{N}$: $\\lambda_n P^{(k)} \\in E_n$. In particular, we show that: $\\lambda_n = \\prod_{p \\text{ prime}} p^{\\lfloor\\frac{n}{p}\\rfloor}$ ($\\forall n \\in \\mathbb{N}$).","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the derivatives of the integer-valued polynomials\",\"authors\":\"Bakir Farhi\",\"doi\":\"10.7169/facm/1786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the derivatives of an integer-valued polynomial of a given degree. Denoting by $E_n$ the set of the integer-valued polynomials with degree $\\\\leq n$, we show that the smallest positive integer $c_n$ satisfying the property: $\\\\forall P \\\\in E_n, c_n P' \\\\in E_n$ is $c_n = \\\\mathrm{lcm}(1 , 2 , \\\\dots , n)$. As an application, we deduce an easy proof of the well-known inequality $\\\\mathrm{lcm}(1 , 2 , \\\\dots , n) \\\\geq 2^{n - 1}$ ($\\\\forall n \\\\geq 1$). In the second part of the paper, we generalize our result for the derivative of a given order $k$ and then we give two divisibility properties for the obtained numbers $c_{n , k}$ (generalizing the $c_n$'s). Leaning on this study, we conclude the paper by determining, for a given natural number $n$, the smallest positive integer $\\\\lambda_n$ satisfying the property: $\\\\forall P \\\\in E_n$, $\\\\forall k \\\\in \\\\mathbb{N}$: $\\\\lambda_n P^{(k)} \\\\in E_n$. In particular, we show that: $\\\\lambda_n = \\\\prod_{p \\\\text{ prime}} p^{\\\\lfloor\\\\frac{n}{p}\\\\rfloor}$ ($\\\\forall n \\\\in \\\\mathbb{N}$).\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
本文研究了给定阶的整数值多项式的导数。用$E_n$表示次为$\leq n$的整值多项式的集合,我们证明了满足性质$\forall P \in E_n, c_n P' \in E_n$的最小正整数$c_n$是$c_n = \mathrm{lcm}(1 , 2 , \dots , n)$。作为一个应用,我们推导出了一个众所周知的不等式$\mathrm{lcm}(1 , 2 , \dots , n) \geq 2^{n - 1}$ ($\forall n \geq 1$)的简单证明。在论文的第二部分,我们推广了给定阶导数$k$的结果,然后给出了所得数$c_{n , k}$的两个可整除性质(推广了$c_n$的性质)。根据这一研究,我们通过确定给定自然数$n$满足性质:$\forall P \in E_n$, $\forall k \in \mathbb{N}$: $\lambda_n P^{(k)} \in E_n$的最小正整数$\lambda_n$来总结本文。特别地,我们显示:$\lambda_n = \prod_{p \text{ prime}} p^{\lfloor\frac{n}{p}\rfloor}$ ($\forall n \in \mathbb{N}$)。
On the derivatives of the integer-valued polynomials
In this paper, we study the derivatives of an integer-valued polynomial of a given degree. Denoting by $E_n$ the set of the integer-valued polynomials with degree $\leq n$, we show that the smallest positive integer $c_n$ satisfying the property: $\forall P \in E_n, c_n P' \in E_n$ is $c_n = \mathrm{lcm}(1 , 2 , \dots , n)$. As an application, we deduce an easy proof of the well-known inequality $\mathrm{lcm}(1 , 2 , \dots , n) \geq 2^{n - 1}$ ($\forall n \geq 1$). In the second part of the paper, we generalize our result for the derivative of a given order $k$ and then we give two divisibility properties for the obtained numbers $c_{n , k}$ (generalizing the $c_n$'s). Leaning on this study, we conclude the paper by determining, for a given natural number $n$, the smallest positive integer $\lambda_n$ satisfying the property: $\forall P \in E_n$, $\forall k \in \mathbb{N}$: $\lambda_n P^{(k)} \in E_n$. In particular, we show that: $\lambda_n = \prod_{p \text{ prime}} p^{\lfloor\frac{n}{p}\rfloor}$ ($\forall n \in \mathbb{N}$).