确定材料内摩擦参数的实验等效阻尼模型

V. B. Zylev, P. O. Platnov
{"title":"确定材料内摩擦参数的实验等效阻尼模型","authors":"V. B. Zylev, P. O. Platnov","doi":"10.22363/1815-5235-2022-18-1-45-53","DOIUrl":null,"url":null,"abstract":"The work is devoted to improving the methods of experimental determination of internal friction parameters in materials. The aim of the laboratory experiments is to obtain physical parameters of the material that allow to take into account the damping forces in a uniaxial stress state. The research is focused on the internal friction model, which is based on the use of the generalized Prandtl model, that gives frequency-independent internal friction and allowing for the dependence of internal friction on the level of time-varying stresses. Damped oscillations during pure bending are recorded on a specially made laboratory installation. The description of the installation, the reference points of which coincide with the fixed points of the realized form of natural oscillations, is provided. The algorithm of cameral processing of experimental data is obtained. It is proposed to use a virtual system equivalent in damping. This is a system with one dynamic degree of freedom. The involvement of an imaginary system permits, after performing tests of the sample for pure bending, to acquire data corresponding to stretching - compression. The technique grants the use of long samples, which reduces the negative effect of stress concentration in the anchorages. The damping equivalent scheme makes it possible to use samples with an arbitrary cross-section. The found damping parameters for low-carbon steel are given.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models equivalent in damping in experiments for determining the parameters of internal friction in materials\",\"authors\":\"V. B. Zylev, P. O. Platnov\",\"doi\":\"10.22363/1815-5235-2022-18-1-45-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to improving the methods of experimental determination of internal friction parameters in materials. The aim of the laboratory experiments is to obtain physical parameters of the material that allow to take into account the damping forces in a uniaxial stress state. The research is focused on the internal friction model, which is based on the use of the generalized Prandtl model, that gives frequency-independent internal friction and allowing for the dependence of internal friction on the level of time-varying stresses. Damped oscillations during pure bending are recorded on a specially made laboratory installation. The description of the installation, the reference points of which coincide with the fixed points of the realized form of natural oscillations, is provided. The algorithm of cameral processing of experimental data is obtained. It is proposed to use a virtual system equivalent in damping. This is a system with one dynamic degree of freedom. The involvement of an imaginary system permits, after performing tests of the sample for pure bending, to acquire data corresponding to stretching - compression. The technique grants the use of long samples, which reduces the negative effect of stress concentration in the anchorages. The damping equivalent scheme makes it possible to use samples with an arbitrary cross-section. The found damping parameters for low-carbon steel are given.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2022-18-1-45-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2022-18-1-45-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于改进材料内摩擦参数的实验测定方法。实验室实验的目的是获得材料的物理参数,以考虑单轴应力状态下的阻尼力。研究的重点是内摩擦模型,该模型基于广义普朗特模型的使用,该模型给出了与频率无关的内摩擦,并考虑了内摩擦对时变应力水平的依赖性。纯弯曲过程中的阻尼振荡记录在专门制作的实验室装置上。提供了该装置的描述,其参考点与实现形式的自然振荡的固定点重合。给出了实验数据的摄像处理算法。建议使用阻尼等效的虚拟系统。这是一个具有一个动态自由度的系统。在对样品进行纯弯曲测试后,虚拟系统的参与允许获得与拉伸-压缩相对应的数据。该技术允许使用长样本,从而减少锚固中应力集中的负面影响。阻尼等效方案使得使用具有任意横截面的样品成为可能。给出了低碳钢的阻尼参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models equivalent in damping in experiments for determining the parameters of internal friction in materials
The work is devoted to improving the methods of experimental determination of internal friction parameters in materials. The aim of the laboratory experiments is to obtain physical parameters of the material that allow to take into account the damping forces in a uniaxial stress state. The research is focused on the internal friction model, which is based on the use of the generalized Prandtl model, that gives frequency-independent internal friction and allowing for the dependence of internal friction on the level of time-varying stresses. Damped oscillations during pure bending are recorded on a specially made laboratory installation. The description of the installation, the reference points of which coincide with the fixed points of the realized form of natural oscillations, is provided. The algorithm of cameral processing of experimental data is obtained. It is proposed to use a virtual system equivalent in damping. This is a system with one dynamic degree of freedom. The involvement of an imaginary system permits, after performing tests of the sample for pure bending, to acquire data corresponding to stretching - compression. The technique grants the use of long samples, which reduces the negative effect of stress concentration in the anchorages. The damping equivalent scheme makes it possible to use samples with an arbitrary cross-section. The found damping parameters for low-carbon steel are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信