{"title":"一类基于二项式系数的对称和非对称带矩阵","authors":"Omojola Micheal, E. Kılıç","doi":"10.1515/spma-2020-0142","DOIUrl":null,"url":null,"abstract":"Abstract Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants and norm-infinity of inverse are presented. The binomial coefficients are used for the derivation of results.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"321 - 330"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0142","citationCount":"0","resultStr":"{\"title\":\"A class of symmetric and non-symmetric band matrices via binomial coefficients\",\"authors\":\"Omojola Micheal, E. Kılıç\",\"doi\":\"10.1515/spma-2020-0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants and norm-infinity of inverse are presented. The binomial coefficients are used for the derivation of results.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"9 1\",\"pages\":\"321 - 330\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A class of symmetric and non-symmetric band matrices via binomial coefficients
Abstract Symmetric matrix classes of bandwidth 2r + 1 was studied in 1972 through binomial coefficients. In this paper, non-symmetric matrix classes with the binomial coefficients are considered where r + s + 1 is the bandwidth, r is the lower bandwidth and s is the upper bandwidth. Main results for inverse, determinants and norm-infinity of inverse are presented. The binomial coefficients are used for the derivation of results.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.