使用人口统计研究的面板数据估计影响函数时需要知道的内容

IF 1.5 Q2 DEMOGRAPHY
Volker Ludwig, J. Brüderl
{"title":"使用人口统计研究的面板数据估计影响函数时需要知道的内容","authors":"Volker Ludwig, J. Brüderl","doi":"10.12765/cpos-2021-16","DOIUrl":null,"url":null,"abstract":"The estimation of impact functions – that is the time-varying causal effect of a dichotomous treatment (e.g., marriage, divorce, parenthood) on outcomes (e.g., earnings, well-being, health) – has become a standard procedure in demographic applications. The basic methodology of estimating impact functions with panel data and fixed-effects regressions is now widely known. However, many researchers may not be fully aware of the methodological subtleties of the approach, which may lead to biased estimates of the impact function. In this paper, we highlight potential pitfalls and provide guidance on how to avoid these in practice. We demonstrate these issues with exemplary analyses, using data from the German Family Panel (pairfam) study and estimating the effect of motherhood on life satisfaction. \n  \n* This article belongs to a special issue on “Identification of causal mechanisms in demographic research: The contribution of panel data”.","PeriodicalId":44592,"journal":{"name":"Comparative Population Studies","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"What You Need to Know When Estimating Impact Functions with Panel Data for Demographic Research\",\"authors\":\"Volker Ludwig, J. Brüderl\",\"doi\":\"10.12765/cpos-2021-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of impact functions – that is the time-varying causal effect of a dichotomous treatment (e.g., marriage, divorce, parenthood) on outcomes (e.g., earnings, well-being, health) – has become a standard procedure in demographic applications. The basic methodology of estimating impact functions with panel data and fixed-effects regressions is now widely known. However, many researchers may not be fully aware of the methodological subtleties of the approach, which may lead to biased estimates of the impact function. In this paper, we highlight potential pitfalls and provide guidance on how to avoid these in practice. We demonstrate these issues with exemplary analyses, using data from the German Family Panel (pairfam) study and estimating the effect of motherhood on life satisfaction. \\n  \\n* This article belongs to a special issue on “Identification of causal mechanisms in demographic research: The contribution of panel data”.\",\"PeriodicalId\":44592,\"journal\":{\"name\":\"Comparative Population Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Population Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12765/cpos-2021-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Population Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12765/cpos-2021-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 10

摘要

影响函数的估计——即二分法治疗(如婚姻、离婚、为人父母)对结果(如收入、幸福感、健康)的时变因果效应——已成为人口统计学应用中的标准程序。用面板数据和固定效应回归估计影响函数的基本方法现在已经广为人知。然而,许多研究人员可能没有完全意识到这种方法在方法上的微妙之处,这可能导致对影响函数的估计存在偏差。在本文中,我们强调了潜在的陷阱,并就如何在实践中避免这些陷阱提供了指导。我们使用德国家庭小组(pairfam)研究的数据,通过示例性分析来证明这些问题,并估计母亲对生活满意度的影响。*本文属于“人口统计学研究中因果机制的识别:面板数据的贡献”的特刊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What You Need to Know When Estimating Impact Functions with Panel Data for Demographic Research
The estimation of impact functions – that is the time-varying causal effect of a dichotomous treatment (e.g., marriage, divorce, parenthood) on outcomes (e.g., earnings, well-being, health) – has become a standard procedure in demographic applications. The basic methodology of estimating impact functions with panel data and fixed-effects regressions is now widely known. However, many researchers may not be fully aware of the methodological subtleties of the approach, which may lead to biased estimates of the impact function. In this paper, we highlight potential pitfalls and provide guidance on how to avoid these in practice. We demonstrate these issues with exemplary analyses, using data from the German Family Panel (pairfam) study and estimating the effect of motherhood on life satisfaction.   * This article belongs to a special issue on “Identification of causal mechanisms in demographic research: The contribution of panel data”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
15
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信