高梯度脉冲磁选回收碳酸锰条件预测及影响因素研究

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
Wang Zhenggang, Nie Guanghua, T. Yun, Piao Haishan, Chen Jiang
{"title":"高梯度脉冲磁选回收碳酸锰条件预测及影响因素研究","authors":"Wang Zhenggang, Nie Guanghua, T. Yun, Piao Haishan, Chen Jiang","doi":"10.37190/ppmp/168668","DOIUrl":null,"url":null,"abstract":"Manganese carbonate ore belongs to weakly magnetic minerals, and its co-associated minerals are mainly non-magnetic minerals, which can be separated from gangue minerals at high magnetic field intensity. However, manganese grade and recovery of magnetic separation concentrate of manganese carbonate ore are low in actual production. Therefore, the influences of manganese carbonate particle size, magnetic field intensity, volume susceptibility, pulse stroke, pH, and other factors were studied. The optimal test conditions for manganese carbonate ore recovery by high-gradient magnetic separation were predicted through the calculation results. The results show that the particle radius of manganese carbonate is 0.020 mm, the pulse impulse time is 200 r/min, and the magnetic field intensity is 0.9 T. The optimum condition test was carried out with Qianbei manganese carbonate ore as the material. The test results show that the optimum conditions are the particle radius of 0.074-0.019 mm, pulse impulse time of 200 r/min, and magnetic field intensity of 1.2 T. The reason for the deviation is that the actual ore has a fine distribution particle size, many associative bodies, complex composition, and serious agglomeration, resulting in variable particle volume susceptibility. The capture yield increases with the increase of magnetic field intensity and volume susceptibility but decreases with the increase of pulse. The lower the surface potential of manganese carbonate, the higher the recovery of manganese carbonate. The grade of manganese concentrate was 19.06% and the recovery was 76.85%. Mixed manganese concentrate with a grade of 18.04% and recovery of 87.14% was obtained by adding drugs and changing the grinding method.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on condition prediction and influencing factors of manganese carbonate recovery by high gradient pulse magnetic separation\",\"authors\":\"Wang Zhenggang, Nie Guanghua, T. Yun, Piao Haishan, Chen Jiang\",\"doi\":\"10.37190/ppmp/168668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manganese carbonate ore belongs to weakly magnetic minerals, and its co-associated minerals are mainly non-magnetic minerals, which can be separated from gangue minerals at high magnetic field intensity. However, manganese grade and recovery of magnetic separation concentrate of manganese carbonate ore are low in actual production. Therefore, the influences of manganese carbonate particle size, magnetic field intensity, volume susceptibility, pulse stroke, pH, and other factors were studied. The optimal test conditions for manganese carbonate ore recovery by high-gradient magnetic separation were predicted through the calculation results. The results show that the particle radius of manganese carbonate is 0.020 mm, the pulse impulse time is 200 r/min, and the magnetic field intensity is 0.9 T. The optimum condition test was carried out with Qianbei manganese carbonate ore as the material. The test results show that the optimum conditions are the particle radius of 0.074-0.019 mm, pulse impulse time of 200 r/min, and magnetic field intensity of 1.2 T. The reason for the deviation is that the actual ore has a fine distribution particle size, many associative bodies, complex composition, and serious agglomeration, resulting in variable particle volume susceptibility. The capture yield increases with the increase of magnetic field intensity and volume susceptibility but decreases with the increase of pulse. The lower the surface potential of manganese carbonate, the higher the recovery of manganese carbonate. The grade of manganese concentrate was 19.06% and the recovery was 76.85%. Mixed manganese concentrate with a grade of 18.04% and recovery of 87.14% was obtained by adding drugs and changing the grinding method.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/168668\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/168668","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳酸锰矿属于弱磁性矿物,其共伴生矿物主要为非磁性矿物,在高磁场强度下可与脉石矿物分离。但实际生产中,碳酸锰矿磁选精矿的锰品位和回收率较低。因此,研究了碳酸锰颗粒尺寸、磁场强度、体积磁化率、脉冲行程、pH等因素的影响。通过计算结果,预测了高梯度磁选回收碳酸锰矿石的最佳试验条件。结果表明,碳酸锰的颗粒半径为0.020mm,脉冲脉冲时间为200r/min,磁场强度为0.9T。试验结果表明,最佳条件是颗粒半径为0.074-0.019mm,脉冲脉冲时间为200r/min,磁场强度为1.2T。产生偏差的原因是实际矿石粒度分布精细,缔合体多,成分复杂,团聚严重,导致颗粒体积磁化率变化。捕获率随磁场强度和体积磁化率的增加而增加,但随脉冲的增加而降低。碳酸锰的表面电位越低,碳酸锰的回收率就越高。锰精矿品位为19.06%,回收率为76.85%。通过添加药物和改变研磨方法,获得品位为18.04%,回收率87.14%的混合锰精矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on condition prediction and influencing factors of manganese carbonate recovery by high gradient pulse magnetic separation
Manganese carbonate ore belongs to weakly magnetic minerals, and its co-associated minerals are mainly non-magnetic minerals, which can be separated from gangue minerals at high magnetic field intensity. However, manganese grade and recovery of magnetic separation concentrate of manganese carbonate ore are low in actual production. Therefore, the influences of manganese carbonate particle size, magnetic field intensity, volume susceptibility, pulse stroke, pH, and other factors were studied. The optimal test conditions for manganese carbonate ore recovery by high-gradient magnetic separation were predicted through the calculation results. The results show that the particle radius of manganese carbonate is 0.020 mm, the pulse impulse time is 200 r/min, and the magnetic field intensity is 0.9 T. The optimum condition test was carried out with Qianbei manganese carbonate ore as the material. The test results show that the optimum conditions are the particle radius of 0.074-0.019 mm, pulse impulse time of 200 r/min, and magnetic field intensity of 1.2 T. The reason for the deviation is that the actual ore has a fine distribution particle size, many associative bodies, complex composition, and serious agglomeration, resulting in variable particle volume susceptibility. The capture yield increases with the increase of magnetic field intensity and volume susceptibility but decreases with the increase of pulse. The lower the surface potential of manganese carbonate, the higher the recovery of manganese carbonate. The grade of manganese concentrate was 19.06% and the recovery was 76.85%. Mixed manganese concentrate with a grade of 18.04% and recovery of 87.14% was obtained by adding drugs and changing the grinding method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信