钉扎扩散过程的支持定理

IF 0.8 2区 数学 Q2 MATHEMATICS
Y. Inahama
{"title":"钉扎扩散过程的支持定理","authors":"Y. Inahama","doi":"10.1017/nmj.2023.25","DOIUrl":null,"url":null,"abstract":"\n In this paper, we prove a support theorem of Stroock–Varadhan type for pinned diffusion processes. To this end, we use two powerful results from stochastic analysis. One is quasi-sure analysis for Brownian rough path. The other is Aida–Kusuoka–Stroock’s positivity theorem for the densities of weighted laws of non-degenerate Wiener functionals.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUPPORT THEOREM FOR PINNED DIFFUSION PROCESSES\",\"authors\":\"Y. Inahama\",\"doi\":\"10.1017/nmj.2023.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we prove a support theorem of Stroock–Varadhan type for pinned diffusion processes. To this end, we use two powerful results from stochastic analysis. One is quasi-sure analysis for Brownian rough path. The other is Aida–Kusuoka–Stroock’s positivity theorem for the densities of weighted laws of non-degenerate Wiener functionals.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.25\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.25","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了钉住扩散过程的Stroock-Varadhan型支持定理。为此,我们使用随机分析的两个强有力的结果。一是布朗粗糙路径的准确定分析。另一个是Aida-Kusuoka-Stroock关于非简并Wiener泛函加权律密度的正性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUPPORT THEOREM FOR PINNED DIFFUSION PROCESSES
In this paper, we prove a support theorem of Stroock–Varadhan type for pinned diffusion processes. To this end, we use two powerful results from stochastic analysis. One is quasi-sure analysis for Brownian rough path. The other is Aida–Kusuoka–Stroock’s positivity theorem for the densities of weighted laws of non-degenerate Wiener functionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信