{"title":"组上的常规左订单","authors":"Y. Antol'in, C. Rivas, H. Su","doi":"10.4171/jca/64","DOIUrl":null,"url":null,"abstract":"A regular left-order on a finitely generated group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and we give a classification of the groups whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag-Solitar group B(1, n) admits a regular left-order if and only if n ≥ −1. Finally, Hermiller and S̆unić showed that no free product admits a regular left-order. We show that if A and B are groups with regular left-orders, then (A ∗B)× Z admits a regular left-order. MSC 2020 classification: 06F15, 20F60, 68Q45","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Regular left-orders on groups\",\"authors\":\"Y. Antol'in, C. Rivas, H. Su\",\"doi\":\"10.4171/jca/64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A regular left-order on a finitely generated group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and we give a classification of the groups whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag-Solitar group B(1, n) admits a regular left-order if and only if n ≥ −1. Finally, Hermiller and S̆unić showed that no free product admits a regular left-order. We show that if A and B are groups with regular left-orders, then (A ∗B)× Z admits a regular left-order. MSC 2020 classification: 06F15, 20F60, 68Q45\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A regular left-order on a finitely generated group G is a total, left-multiplication invariant order on G whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and we give a classification of the groups whose left-orders are all regular left-orders. In addition, we prove that a solvable Baumslag-Solitar group B(1, n) admits a regular left-order if and only if n ≥ −1. Finally, Hermiller and S̆unić showed that no free product admits a regular left-order. We show that if A and B are groups with regular left-orders, then (A ∗B)× Z admits a regular left-order. MSC 2020 classification: 06F15, 20F60, 68Q45