定义在环上的离散函数的诊断检验

IF 0.3 Q4 MATHEMATICS, APPLIED
G. V. Antyufeev
{"title":"定义在环上的离散函数的诊断检验","authors":"G. V. Antyufeev","doi":"10.1515/dma-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract The paper is concerned with sources of faults associated with commutative principal ideal rings. Tables of faults of such sources are known to correspond to Cayley multiplication tables in rings, whose elements are replaced by the values of a Boolean function of these elements. For such rings, the concepts of a diagnostic test and the Shannon function for the length of a diagnostic test are introduced in a natural way. It is shown that if A is a principal ideal ring with only one prime ideal p ≠ A, and if pn = 0 for some n ∈ ℕ, then, for this ring, the Shannon length function of a diagnostic test has the form Ldiagn(A, n) = Θ(n). We also define an easily testable functions, i.e., a function with respect to which the order of growth of the length of a diagnostic test with respect to this function is equal to the logarithm of the number of pairwise distinct columns of the table of faults. A link between easily testable functions and column separation of tables of faults for two concrete sources of faults is established.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"32 1","pages":"147 - 153"},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic tests for discrete functions defined on rings\",\"authors\":\"G. V. Antyufeev\",\"doi\":\"10.1515/dma-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper is concerned with sources of faults associated with commutative principal ideal rings. Tables of faults of such sources are known to correspond to Cayley multiplication tables in rings, whose elements are replaced by the values of a Boolean function of these elements. For such rings, the concepts of a diagnostic test and the Shannon function for the length of a diagnostic test are introduced in a natural way. It is shown that if A is a principal ideal ring with only one prime ideal p ≠ A, and if pn = 0 for some n ∈ ℕ, then, for this ring, the Shannon length function of a diagnostic test has the form Ldiagn(A, n) = Θ(n). We also define an easily testable functions, i.e., a function with respect to which the order of growth of the length of a diagnostic test with respect to this function is equal to the logarithm of the number of pairwise distinct columns of the table of faults. A link between easily testable functions and column separation of tables of faults for two concrete sources of faults is established.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"32 1\",\"pages\":\"147 - 153\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2022-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了交换主理想环的故障来源。已知这些源的故障表对应于环形的凯利乘法表,其元素被这些元素的布尔函数的值所取代。对于这样的环,以一种自然的方式引入了诊断测试的概念和诊断测试长度的Shannon函数。证明了如果A是一个只有一个素理想p≠A的主理想环,且对于某n∈n, pn = 0,则对于该环,诊断检验的香农长度函数具有Ldiagn(A, n) = Θ(n)的形式。我们还定义了一个易于测试的函数,即一个函数,对于这个函数,诊断测试的长度的增长顺序等于故障表中成对不同列数的对数。针对两个具体的故障源,建立了易测试函数与故障表列分离之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic tests for discrete functions defined on rings
Abstract The paper is concerned with sources of faults associated with commutative principal ideal rings. Tables of faults of such sources are known to correspond to Cayley multiplication tables in rings, whose elements are replaced by the values of a Boolean function of these elements. For such rings, the concepts of a diagnostic test and the Shannon function for the length of a diagnostic test are introduced in a natural way. It is shown that if A is a principal ideal ring with only one prime ideal p ≠ A, and if pn = 0 for some n ∈ ℕ, then, for this ring, the Shannon length function of a diagnostic test has the form Ldiagn(A, n) = Θ(n). We also define an easily testable functions, i.e., a function with respect to which the order of growth of the length of a diagnostic test with respect to this function is equal to the logarithm of the number of pairwise distinct columns of the table of faults. A link between easily testable functions and column separation of tables of faults for two concrete sources of faults is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信