用于紫外光电阴极的梯度Al组分AlGaN纳米线的光学特性研究

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhisheng Lv, Lei Liu, X. Zhangyang, F. Lu, Jian Tian
{"title":"用于紫外光电阴极的梯度Al组分AlGaN纳米线的光学特性研究","authors":"Zhisheng Lv, Lei Liu, X. Zhangyang, F. Lu, Jian Tian","doi":"10.1117/1.JPE.11.014501","DOIUrl":null,"url":null,"abstract":"Abstract. We numerically studied the effect of the geometric structure and Al component on the optical capture performance of gradient Al component AlxGa1  −  xN photocathodes. The effects of geometric parameters, such as base radius (R), wire-to-wire spacing, cone rate, and angle of incident light, on the optical response were systematically studied based on the finite element method. In the radial direction, we study the optical response of rectangular periodic structure and hexagonal periodic structure. Simulation results show that pencil nanostructure can achieve omnidirectional and broadband light absorption of AlxGa1  −  xN nanowires with hexagonal periodic structure. In addition, we used the Spicer three-step emission model to establish the photoemission efficiency of the AlxGa1  −  xN nanostructure. As a result, the photocathode achieves optimal quantum efficiency when the Al component is in the range of 0 to 0.75 and sublayer thickness of 240, 180, 120, and 60 nm.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"11 1","pages":"014501 - 014501"},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the optical characteristics of gradient Al component AlGaN nanowires for ultraviolet photocathode\",\"authors\":\"Zhisheng Lv, Lei Liu, X. Zhangyang, F. Lu, Jian Tian\",\"doi\":\"10.1117/1.JPE.11.014501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We numerically studied the effect of the geometric structure and Al component on the optical capture performance of gradient Al component AlxGa1  −  xN photocathodes. The effects of geometric parameters, such as base radius (R), wire-to-wire spacing, cone rate, and angle of incident light, on the optical response were systematically studied based on the finite element method. In the radial direction, we study the optical response of rectangular periodic structure and hexagonal periodic structure. Simulation results show that pencil nanostructure can achieve omnidirectional and broadband light absorption of AlxGa1  −  xN nanowires with hexagonal periodic structure. In addition, we used the Spicer three-step emission model to establish the photoemission efficiency of the AlxGa1  −  xN nanostructure. As a result, the photocathode achieves optimal quantum efficiency when the Al component is in the range of 0 to 0.75 and sublayer thickness of 240, 180, 120, and 60 nm.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"11 1\",\"pages\":\"014501 - 014501\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.11.014501\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.11.014501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要数值研究了几何结构和Al组分对梯度Al组分AlxGa1光学捕获性能的影响  −  xN光电阴极。基于有限元方法,系统地研究了几何参数,如基底半径(R)、线间距、锥率和入射光角度对光学响应的影响。在径向上,我们研究了矩形周期结构和六边形周期结构的光学响应。模拟结果表明,铅笔状纳米结构可以实现AlxGa1的全向宽带光吸收  −  具有六方周期结构的xN纳米线。此外,我们使用Spicer三步发射模型来建立AlxGa1的光电发射效率  −  xN纳米结构。结果,当Al组分在0至0.75的范围内并且子层厚度为240、180、120和60nm时,光电阴极实现了最佳量子效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the optical characteristics of gradient Al component AlGaN nanowires for ultraviolet photocathode
Abstract. We numerically studied the effect of the geometric structure and Al component on the optical capture performance of gradient Al component AlxGa1  −  xN photocathodes. The effects of geometric parameters, such as base radius (R), wire-to-wire spacing, cone rate, and angle of incident light, on the optical response were systematically studied based on the finite element method. In the radial direction, we study the optical response of rectangular periodic structure and hexagonal periodic structure. Simulation results show that pencil nanostructure can achieve omnidirectional and broadband light absorption of AlxGa1  −  xN nanowires with hexagonal periodic structure. In addition, we used the Spicer three-step emission model to establish the photoemission efficiency of the AlxGa1  −  xN nanostructure. As a result, the photocathode achieves optimal quantum efficiency when the Al component is in the range of 0 to 0.75 and sublayer thickness of 240, 180, 120, and 60 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信