多面体对范畴上同调的唯一性定理

IF 0.3 Q4 MATHEMATICS
L. Mdzinarishvili
{"title":"多面体对范畴上同调的唯一性定理","authors":"L. Mdzinarishvili","doi":"10.1016/j.trmi.2018.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>X</mi></math></span> be a topological space and <span><math><mi>F</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>}</mo></mrow></math></span> be a direct system of all compact subsets <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of <span><math><mi>X</mi></math></span>, directed by inclusions. For any homology theory <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> the groups <span><math><mrow><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>∣</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⊂</mo><mi>X</mi><mo>}</mo></mrow></math></span> constitute a direct system, and the maps <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> define a homomorphism <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟶</mo></mrow></munder><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>.</p><p>As is known (Theorem 4.4.6, Spanier, 1966), for the singular homology, the homomorphism <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> is an isomorphism <span><span><span>(1)</span><span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟶</mo></mrow></munder><msubsup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mover><mrow><mo>⟶</mo></mrow><mrow><mrow><mo>∼</mo></mrow></mrow></mover><msubsup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>.</mo></math></span></span></span>Using the isomorphism <span>(1)</span>, it is proved that for the homologies having compact support <span><math><mi>H</mi></math></span> there is the uniqueness theorem on the category of polyhedral pairs (Theorem 4.8.14, Spanier, 1966).</p><p>Since the singular homology theory is a homology theory with compact supports, the uniqueness theorem connects all homology theories having compact supports with the singular homology theory.</p><p>Let <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> be a cohomology theory. The groups <span><math><mrow><mo>{</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>∣</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⊂</mo><mi>X</mi><mo>}</mo></mrow></math></span> constitute an inverse system, and the maps <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>→</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow></math></span> define a homomorphism <span><span><span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>:</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>→</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></math></span></span></span>Since the homology functor does not commute with inverse limits, it is not true that the singular cohomology of a space is isomorphic to the inverse limit of the singular cohomology of its compact subsets (that is, there is no general cohomology analogue of Theorem 4.4.6, Spanier, 1966).</p><p>In the present work, it will be shown that there is such connection for a singular cohomology. Namely, there exists a finite exact sequence <span><span><span><span>(2)</span><span><math><mn>0</mn><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><mo>⋯</mo><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder><mspace></mspace><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><mo>⋯</mo><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><mn>0</mn><mo>.</mo></math></span></span></span></span>\n</p><p>The terms the Alexander cohomology with compact supports and the singular cohomology with compact supports used in the works (Spanier, 1966; Mdzinarishvili, 1984) do not refer to our problem. Therefore, cohomology theory, in particular the singular cohomology, for which there is a finite exact sequence <span>(2)</span>, is called a cohomology with partially compact supports.</p><p>In the present work, using a finite exact sequence <span>(2)</span>, it is proved the uniqueness theorem for a cohomology having partially compact supports on the category of polyhedral pairs. Hence, the uniqueness theorem connects all cohomology theories with partially compact supports with the singular cohomology theory.</p></div>","PeriodicalId":43623,"journal":{"name":"Transactions of A Razmadze Mathematical Institute","volume":"172 2","pages":"Pages 265-275"},"PeriodicalIF":0.3000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.002","citationCount":"7","resultStr":"{\"title\":\"The uniqueness theorem for cohomologies on the category of polyhedral pairs\",\"authors\":\"L. Mdzinarishvili\",\"doi\":\"10.1016/j.trmi.2018.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>X</mi></math></span> be a topological space and <span><math><mi>F</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>}</mo></mrow></math></span> be a direct system of all compact subsets <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> of <span><math><mi>X</mi></math></span>, directed by inclusions. For any homology theory <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> the groups <span><math><mrow><mo>{</mo><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>∣</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⊂</mo><mi>X</mi><mo>}</mo></mrow></math></span> constitute a direct system, and the maps <span><math><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> define a homomorphism <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟶</mo></mrow></munder><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>.</p><p>As is known (Theorem 4.4.6, Spanier, 1966), for the singular homology, the homomorphism <span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> is an isomorphism <span><span><span>(1)</span><span><math><msub><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>:</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟶</mo></mrow></munder><msubsup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mover><mrow><mo>⟶</mo></mrow><mrow><mrow><mo>∼</mo></mrow></mrow></mover><msubsup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>.</mo></math></span></span></span>Using the isomorphism <span>(1)</span>, it is proved that for the homologies having compact support <span><math><mi>H</mi></math></span> there is the uniqueness theorem on the category of polyhedral pairs (Theorem 4.8.14, Spanier, 1966).</p><p>Since the singular homology theory is a homology theory with compact supports, the uniqueness theorem connects all homology theories having compact supports with the singular homology theory.</p><p>Let <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> be a cohomology theory. The groups <span><math><mrow><mo>{</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>∣</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>⊂</mo><mi>X</mi><mo>}</mo></mrow></math></span> constitute an inverse system, and the maps <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>→</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow></math></span> define a homomorphism <span><span><span><math><msup><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>:</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>→</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder><msup><mrow><mi>H</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></math></span></span></span>Since the homology functor does not commute with inverse limits, it is not true that the singular cohomology of a space is isomorphic to the inverse limit of the singular cohomology of its compact subsets (that is, there is no general cohomology analogue of Theorem 4.4.6, Spanier, 1966).</p><p>In the present work, it will be shown that there is such connection for a singular cohomology. Namely, there exists a finite exact sequence <span><span><span><span>(2)</span><span><math><mn>0</mn><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><mo>⋯</mo><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder><mspace></mspace><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><mo>⋯</mo><mo>⟶</mo><msup><mrow><munder><mrow><mo>lim</mo></mrow><mrow><mo>⟵</mo></mrow></munder></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup><msubsup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></mrow><mo>⟶</mo><mn>0</mn><mo>.</mo></math></span></span></span></span>\\n</p><p>The terms the Alexander cohomology with compact supports and the singular cohomology with compact supports used in the works (Spanier, 1966; Mdzinarishvili, 1984) do not refer to our problem. Therefore, cohomology theory, in particular the singular cohomology, for which there is a finite exact sequence <span>(2)</span>, is called a cohomology with partially compact supports.</p><p>In the present work, using a finite exact sequence <span>(2)</span>, it is proved the uniqueness theorem for a cohomology having partially compact supports on the category of polyhedral pairs. Hence, the uniqueness theorem connects all cohomology theories with partially compact supports with the singular cohomology theory.</p></div>\",\"PeriodicalId\":43623,\"journal\":{\"name\":\"Transactions of A Razmadze Mathematical Institute\",\"volume\":\"172 2\",\"pages\":\"Pages 265-275\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.trmi.2018.03.002\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of A Razmadze Mathematical Institute\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2346809217301137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of A Razmadze Mathematical Institute","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2346809217301137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设X是一个拓扑空间,F={Fα}是X的所有紧子集Fα的直接系统,由包含定向。对于任何同调理论H∗,群{H∗(Fα)∣Fα∧X}构成一个直接系统,映射H∗(Fα)→H∗(X)定义了一个同态i∗:lim ? H∗(Fα)→H∗(X)。如已知的(定理4.4.6,Spanier, 1966),对于奇异同构,i∗是一个同构(1)i∗:lim ? H∗s(Fα) ? ~ H∗s(X)。利用同构(1)证明了具有紧支持H的同构在多面体对范畴上存在唯一性定理(定理4.8.14,Spanier, 1966)。由于奇异同调理论是具有紧支持的同调理论,所以唯一性定理将所有具有紧支持的同调理论与奇异同调理论联系起来。设H *是上同调理论。群{H∗(Fα)∣Fα∧X}构成一个逆系统,映射H∗(X)→H∗(Fα)定义了一个同态i∗:H∗(X)→lim图解H∗(Fα)。由于同调函子不能与逆极限交换,因此空间的奇异上同构与其紧子集的奇异上同构的逆极限是不成立的(也就是说,没有定理4.4.6,Spanier, 1966的一般上同构类比)。在目前的工作中,它将被证明,有这样的联系,为一个奇异上同。也就是说,存在一个有限的序列(2)0⟶lim⟵(2 n−3)Hs1 (Fα,G)⟶⋯⟶lim⟵(1)Hsn−1 (Fα,G)⟶Hsn (X, G)⟶lim⟵Hsn (Fα,G)⟶lim⟵(2)Hsn−1 (Fα,G)⟶⋯⟶lim⟵(2 n−2)Hs1 (Fα,G)⟶0。在著作中使用的术语紧支承的亚历山大上同调和紧支承的奇异上同调(Spanier, 1966;Mdzinarishvili, 1984)没有提到我们的问题。因此,上同调理论,特别是存在有限精确序列(2)的奇异上同调,称为具有部分紧支撑的上同调。本文利用有限精确序列(2),证明了多面体对范畴上具有部分紧支的上同调的唯一性定理。因此,唯一性定理将所有具有部分紧支持的上同调理论与奇异上同调理论联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The uniqueness theorem for cohomologies on the category of polyhedral pairs

Let X be a topological space and F={Fα} be a direct system of all compact subsets Fα of X, directed by inclusions. For any homology theory H the groups {H(Fα)FαX} constitute a direct system, and the maps H(Fα)H(X) define a homomorphism i:limH(Fα)H(X).

As is known (Theorem 4.4.6, Spanier, 1966), for the singular homology, the homomorphism i is an isomorphism (1)i:limHs(Fα)Hs(X).Using the isomorphism (1), it is proved that for the homologies having compact support H there is the uniqueness theorem on the category of polyhedral pairs (Theorem 4.8.14, Spanier, 1966).

Since the singular homology theory is a homology theory with compact supports, the uniqueness theorem connects all homology theories having compact supports with the singular homology theory.

Let H be a cohomology theory. The groups {H(Fα)FαX} constitute an inverse system, and the maps H(X)H(Fα) define a homomorphism i:H(X)limH(Fα).Since the homology functor does not commute with inverse limits, it is not true that the singular cohomology of a space is isomorphic to the inverse limit of the singular cohomology of its compact subsets (that is, there is no general cohomology analogue of Theorem 4.4.6, Spanier, 1966).

In the present work, it will be shown that there is such connection for a singular cohomology. Namely, there exists a finite exact sequence (2)0lim(2n3)Hs1(Fα,G)lim(1)Hsn1(Fα,G)Hsn(X,G)limHsn(Fα,G)lim(2)Hsn1(Fα,G)lim(2n2)Hs1(Fα,G)0.

The terms the Alexander cohomology with compact supports and the singular cohomology with compact supports used in the works (Spanier, 1966; Mdzinarishvili, 1984) do not refer to our problem. Therefore, cohomology theory, in particular the singular cohomology, for which there is a finite exact sequence (2), is called a cohomology with partially compact supports.

In the present work, using a finite exact sequence (2), it is proved the uniqueness theorem for a cohomology having partially compact supports on the category of polyhedral pairs. Hence, the uniqueness theorem connects all cohomology theories with partially compact supports with the singular cohomology theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
50.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信