分析印尼巴厘省水污染与经济活动的关系,以制定更有效的污染控制政策

IF 4.6 3区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
S. Chapagain, G. Mohan, A. B. Rimba, C. Payus, I. Sudarma, K. Fukushi
{"title":"分析印尼巴厘省水污染与经济活动的关系,以制定更有效的污染控制政策","authors":"S. Chapagain, G. Mohan, A. B. Rimba, C. Payus, I. Sudarma, K. Fukushi","doi":"10.21203/rs.3.rs-604424/v1","DOIUrl":null,"url":null,"abstract":"An adequate water supply is essential for the continued and sustainable growth of the Balinese economy. In addition to mounting water demand, Bali’s water supply has been constrained by high levels of water pollution. Despite being paid great attention, Bali’s earlier efforts to control water pollution yet to prove effective, mainly owing to their reliance on traditional methods and regulations that focus on water pollution being linked to discrete sets of economic activity (e.g., processing industries, livestock farming, and hotels). However, an economy of a region/country comprises a set of sectoral activities, which are interconnected through supply chains; thus, water pollution could be well explained by examining the entire sectoral economic activities and their environmental performance. Therefore, determining the structural relationships between water pollution and economic activity serves as an important basis for more effective forms of pollution control for the Balinese economy. In this study, accordingly, we employed an environmentally extended input–output model to establish the links between water pollution and the production processes of the entire economy. Using biochemical oxygen demand (BOD) as a proxy for water quality in our analysis, we estimated that 246.9 kt of BOD were produced from Bali’s economic activity in 2007. Further, we identified the chief BOD-emitting sectors and found that intermediate demand and household demand were the major causes of BOD discharge in the economy. We also accounted for the indirect role of each sector in total BOD emissions. Moreover, we categorized the sectors into four groups based on their direct and indirect BOD emission characteristics and offered appropriate policy measures for each group. Managing demand (i.e., lowering household consumption and exports) and shifting input suppliers (i.e., from polluters to non-polluters) are effective measures to control pollution for Categories I and II, respectively; clean production and abatement is advised for Category III; and a hybrid approach (i.e., demand management and abatement technology) is recommended for Category IV.","PeriodicalId":22130,"journal":{"name":"Sustainable Environment Research","volume":"32 1","pages":"1-14"},"PeriodicalIF":4.6000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analyzing the relationship between water pollution and economic activity for a more effective pollution control policy in Bali Province, Indonesia\",\"authors\":\"S. Chapagain, G. Mohan, A. B. Rimba, C. Payus, I. Sudarma, K. Fukushi\",\"doi\":\"10.21203/rs.3.rs-604424/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adequate water supply is essential for the continued and sustainable growth of the Balinese economy. In addition to mounting water demand, Bali’s water supply has been constrained by high levels of water pollution. Despite being paid great attention, Bali’s earlier efforts to control water pollution yet to prove effective, mainly owing to their reliance on traditional methods and regulations that focus on water pollution being linked to discrete sets of economic activity (e.g., processing industries, livestock farming, and hotels). However, an economy of a region/country comprises a set of sectoral activities, which are interconnected through supply chains; thus, water pollution could be well explained by examining the entire sectoral economic activities and their environmental performance. Therefore, determining the structural relationships between water pollution and economic activity serves as an important basis for more effective forms of pollution control for the Balinese economy. In this study, accordingly, we employed an environmentally extended input–output model to establish the links between water pollution and the production processes of the entire economy. Using biochemical oxygen demand (BOD) as a proxy for water quality in our analysis, we estimated that 246.9 kt of BOD were produced from Bali’s economic activity in 2007. Further, we identified the chief BOD-emitting sectors and found that intermediate demand and household demand were the major causes of BOD discharge in the economy. We also accounted for the indirect role of each sector in total BOD emissions. Moreover, we categorized the sectors into four groups based on their direct and indirect BOD emission characteristics and offered appropriate policy measures for each group. Managing demand (i.e., lowering household consumption and exports) and shifting input suppliers (i.e., from polluters to non-polluters) are effective measures to control pollution for Categories I and II, respectively; clean production and abatement is advised for Category III; and a hybrid approach (i.e., demand management and abatement technology) is recommended for Category IV.\",\"PeriodicalId\":22130,\"journal\":{\"name\":\"Sustainable Environment Research\",\"volume\":\"32 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-604424/v1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-604424/v1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

充足的水供应对巴厘岛经济的持续和可持续增长至关重要。除了不断增长的水需求外,巴厘岛的水供应还受到严重水污染的制约。尽管受到了极大的关注,但巴厘岛早期控制水污染的努力尚未证明是有效的,主要原因是他们依赖于传统的方法和法规,将水污染与离散的经济活动(例如,加工业、畜牧业和酒店)联系起来。然而,一个地区/国家的经济由一系列部门活动组成,这些活动通过供应链相互联系;因此,水污染可以通过审查整个部门经济活动及其环境绩效得到很好的解释。因此,确定水污染与经济活动之间的结构性关系是为巴厘岛经济提供更有效的污染控制形式的重要基础。因此,在本研究中,我们采用环境扩展的投入产出模型来建立水污染与整个经济生产过程之间的联系。在我们的分析中,使用生化需氧量(BOD)作为水质的代表,我们估计2007年巴厘岛的经济活动产生了246.9 kt的BOD。进一步,我们确定了主要的BOD排放部门,发现中间需求和家庭需求是经济中BOD排放的主要原因。我们还考虑了每个部门在总生物需氧量排放中的间接作用。并根据行业直接和间接BOD排放特征将其划分为4类,提出了相应的政策措施。管理需求(即降低家庭消费和出口)和转移投入供应商(即从污染者转向非污染者)分别是控制第一类和第二类污染的有效措施;第三类建议清洁生产和减排;第IV类建议采用混合方法(即需求管理和减排技术)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the relationship between water pollution and economic activity for a more effective pollution control policy in Bali Province, Indonesia
An adequate water supply is essential for the continued and sustainable growth of the Balinese economy. In addition to mounting water demand, Bali’s water supply has been constrained by high levels of water pollution. Despite being paid great attention, Bali’s earlier efforts to control water pollution yet to prove effective, mainly owing to their reliance on traditional methods and regulations that focus on water pollution being linked to discrete sets of economic activity (e.g., processing industries, livestock farming, and hotels). However, an economy of a region/country comprises a set of sectoral activities, which are interconnected through supply chains; thus, water pollution could be well explained by examining the entire sectoral economic activities and their environmental performance. Therefore, determining the structural relationships between water pollution and economic activity serves as an important basis for more effective forms of pollution control for the Balinese economy. In this study, accordingly, we employed an environmentally extended input–output model to establish the links between water pollution and the production processes of the entire economy. Using biochemical oxygen demand (BOD) as a proxy for water quality in our analysis, we estimated that 246.9 kt of BOD were produced from Bali’s economic activity in 2007. Further, we identified the chief BOD-emitting sectors and found that intermediate demand and household demand were the major causes of BOD discharge in the economy. We also accounted for the indirect role of each sector in total BOD emissions. Moreover, we categorized the sectors into four groups based on their direct and indirect BOD emission characteristics and offered appropriate policy measures for each group. Managing demand (i.e., lowering household consumption and exports) and shifting input suppliers (i.e., from polluters to non-polluters) are effective measures to control pollution for Categories I and II, respectively; clean production and abatement is advised for Category III; and a hybrid approach (i.e., demand management and abatement technology) is recommended for Category IV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.00%
发文量
47
审稿时长
30 weeks
期刊介绍: The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to: 1. Water and Wastewater • Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment 2. Soil and Groundwater Pollution • Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites 3. Air Pollution and Climate Change • Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control 4. Waste Management • Waste reduction and minimization • Recourse recovery and conservation • Solid waste treatment technology and disposal 5. Energy and Resources • Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信