轧制薄板曲率的规定:回到Candel定理

Pub Date : 2020-09-09 DOI:10.5802/aif.3476
Sébastien Alvarez, G. Smith
{"title":"轧制薄板曲率的规定:回到Candel定理","authors":"Sébastien Alvarez, G. Smith","doi":"10.5802/aif.3476","DOIUrl":null,"url":null,"abstract":"In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger-Gromov topology on the space of complete pointed riemannian manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel\",\"authors\":\"Sébastien Alvarez, G. Smith\",\"doi\":\"10.5802/aif.3476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger-Gromov topology on the space of complete pointed riemannian manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文重述了坎德尔的一个著名定理,通过证明给定一个紧的双曲曲面层积,每一个叶内光滑且横向连续的负函数都是相应保形类中唯一层积度量的曲率函数,从而推广了该定理。我们将这一结果解释为关于完全点黎曼流形空间上Cheeger-Gromov拓扑中某些椭圆型偏微分方程解的连续性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger-Gromov topology on the space of complete pointed riemannian manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信