{"title":"单环平面图的奇面全着色","authors":"J. Czap","doi":"10.47443/dml.2022.022","DOIUrl":null,"url":null,"abstract":"A facial total-coloring of a plane graph G is a coloring of the vertices and edges such that no facially adjacent edges (edges that are consecutive on the boundary walk of a face of G ), no adjacent vertices, and no edge and its endvertices are assigned the same color. A facial total-coloring of G is odd if for every face f and every color c , either no element or an odd number of elements incident with f is colored by c . In this paper, it is proved that every unicyclic plane graph admits an odd facial total-coloring with at most 10 colors. It is also shown that this bound is tight.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Odd Facial Total-Coloring of Unicyclic Plane Graphs\",\"authors\":\"J. Czap\",\"doi\":\"10.47443/dml.2022.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A facial total-coloring of a plane graph G is a coloring of the vertices and edges such that no facially adjacent edges (edges that are consecutive on the boundary walk of a face of G ), no adjacent vertices, and no edge and its endvertices are assigned the same color. A facial total-coloring of G is odd if for every face f and every color c , either no element or an odd number of elements incident with f is colored by c . In this paper, it is proved that every unicyclic plane graph admits an odd facial total-coloring with at most 10 colors. It is also shown that this bound is tight.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Odd Facial Total-Coloring of Unicyclic Plane Graphs
A facial total-coloring of a plane graph G is a coloring of the vertices and edges such that no facially adjacent edges (edges that are consecutive on the boundary walk of a face of G ), no adjacent vertices, and no edge and its endvertices are assigned the same color. A facial total-coloring of G is odd if for every face f and every color c , either no element or an odd number of elements incident with f is colored by c . In this paper, it is proved that every unicyclic plane graph admits an odd facial total-coloring with at most 10 colors. It is also shown that this bound is tight.