基于神经网络预测控制器的换热器串联控制

IF 0.9 Q4 CHEMISTRY, MULTIDISCIPLINARY
A. Vasickaninova, M. Bakosová, A. Mészáros
{"title":"基于神经网络预测控制器的换热器串联控制","authors":"A. Vasickaninova, M. Bakosová, A. Mészáros","doi":"10.2478/acs-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract The paper reveals three applications of neural network predictive control (NNPC) to a system of four heat exchangers (HEs) in series with counterflow configuration to save energy expressed by cooling water in the system of HEs cooling the distillation product. Neural networks (NNs) are used at first in conventional NNPC and subsequently, neural network predictive controllers (NNPCLs) are employed as a master controller in a cascade control, and as a feedback controller in the control system with disturbance measurement. Neural-network-predictive-control-based (NNPC-based) feedback control systems are compared with PI controller based feedback control loop. Series of simulation experiments were done and the results showed that using NNPC-based cascade control reduced cooling water consumption. This control system also significantly reduced the settling time and overshoots in the control responses and provided the best assessed integral quality criteria compared to other control systems. NNPC-based cascade control can also be interesting for industrial use. Generally, simulation results proved that NNPC-based control systems are promising means for the improvement of HEs control and achievement of energy saving.","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":"13 1","pages":"41 - 48"},"PeriodicalIF":0.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of heat exchangers in series using neural network predictive controllers\",\"authors\":\"A. Vasickaninova, M. Bakosová, A. Mészáros\",\"doi\":\"10.2478/acs-2020-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper reveals three applications of neural network predictive control (NNPC) to a system of four heat exchangers (HEs) in series with counterflow configuration to save energy expressed by cooling water in the system of HEs cooling the distillation product. Neural networks (NNs) are used at first in conventional NNPC and subsequently, neural network predictive controllers (NNPCLs) are employed as a master controller in a cascade control, and as a feedback controller in the control system with disturbance measurement. Neural-network-predictive-control-based (NNPC-based) feedback control systems are compared with PI controller based feedback control loop. Series of simulation experiments were done and the results showed that using NNPC-based cascade control reduced cooling water consumption. This control system also significantly reduced the settling time and overshoots in the control responses and provided the best assessed integral quality criteria compared to other control systems. NNPC-based cascade control can also be interesting for industrial use. Generally, simulation results proved that NNPC-based control systems are promising means for the improvement of HEs control and achievement of energy saving.\",\"PeriodicalId\":7088,\"journal\":{\"name\":\"Acta Chimica Slovaca\",\"volume\":\"13 1\",\"pages\":\"41 - 48\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chimica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acs-2020-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文介绍了神经网络预测控制(NNPC)在4台换热器串联逆流配置系统中的三种应用,以节省换热器冷却蒸馏产品系统中冷却水的能量。神经网络(Neural network, NNs)首先用于传统的NNPC中,随后,神经网络预测控制器(Neural network predictive controller, nnpcl)在串级控制中作为主控制器,在具有扰动测量的控制系统中作为反馈控制器。将基于神经网络预测控制的反馈控制系统与基于PI控制器的反馈控制回路进行了比较。进行了一系列的仿真实验,结果表明,采用基于nnpc的串级控制可以降低冷却水的消耗。与其他控制系统相比,该控制系统还显着减少了控制响应中的沉降时间和超调,并提供了最佳的评估整体质量标准。基于nnpc的串级控制在工业应用中也很有趣。总的来说,仿真结果证明了基于nnpc的控制系统是改善HEs控制和实现节能的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of heat exchangers in series using neural network predictive controllers
Abstract The paper reveals three applications of neural network predictive control (NNPC) to a system of four heat exchangers (HEs) in series with counterflow configuration to save energy expressed by cooling water in the system of HEs cooling the distillation product. Neural networks (NNs) are used at first in conventional NNPC and subsequently, neural network predictive controllers (NNPCLs) are employed as a master controller in a cascade control, and as a feedback controller in the control system with disturbance measurement. Neural-network-predictive-control-based (NNPC-based) feedback control systems are compared with PI controller based feedback control loop. Series of simulation experiments were done and the results showed that using NNPC-based cascade control reduced cooling water consumption. This control system also significantly reduced the settling time and overshoots in the control responses and provided the best assessed integral quality criteria compared to other control systems. NNPC-based cascade control can also be interesting for industrial use. Generally, simulation results proved that NNPC-based control systems are promising means for the improvement of HEs control and achievement of energy saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Chimica Slovaca
Acta Chimica Slovaca CHEMISTRY, MULTIDISCIPLINARY-
自引率
12.50%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信