干沙中爆炸效应的土工离心模拟:科里奥利效应和土拱

IF 1.2 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
Longhua Guan, Fengkui Zhao, Qiang Lu, Jun-chao Li, Yubing Wang, B. Zhu, Dezhi Zhang
{"title":"干沙中爆炸效应的土工离心模拟:科里奥利效应和土拱","authors":"Longhua Guan, Fengkui Zhao, Qiang Lu, Jun-chao Li, Yubing Wang, B. Zhu, Dezhi Zhang","doi":"10.1680/jphmg.22.00068","DOIUrl":null,"url":null,"abstract":"Centrifuge model tests are performed to investigate the dynamic response of dry sand under blast loading. The characteristics and propagation mode of blast waves in dry sand are studied. The Coriolis effect on blast-induced cratering is carefully scrutinized, and both the theoretical and experimental results are provided and agree with each other. In the explosion-induced cratering process, the sand ejecta is subjected to horizontal and vertical Coriolis forces simultaneously; the former directly determines the horizontal motion offset, while the latter affects the particle motion by altering the flight time, and the Coriolis effect on cratering can only be observed apparently for soil ejecta with a relatively small launch angle. Redistribution of the static earth pressure (blast-induced arching effect) in deep-buried, fully confined explosion events under hypergravity is observed. The friction between sand particles is significantly enhanced by the hypergravity to serve as the supporting arch springing. Conceptual analysis is conducted to further reveal the mechanism of the blast-induced arching effect based on the trapdoor test from three aspects of displacement mode, stress development, and post-detonation stress distribution.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geotechnical centrifuge modelling of blast effects in dry sand: Coriolis effect and soil arching\",\"authors\":\"Longhua Guan, Fengkui Zhao, Qiang Lu, Jun-chao Li, Yubing Wang, B. Zhu, Dezhi Zhang\",\"doi\":\"10.1680/jphmg.22.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrifuge model tests are performed to investigate the dynamic response of dry sand under blast loading. The characteristics and propagation mode of blast waves in dry sand are studied. The Coriolis effect on blast-induced cratering is carefully scrutinized, and both the theoretical and experimental results are provided and agree with each other. In the explosion-induced cratering process, the sand ejecta is subjected to horizontal and vertical Coriolis forces simultaneously; the former directly determines the horizontal motion offset, while the latter affects the particle motion by altering the flight time, and the Coriolis effect on cratering can only be observed apparently for soil ejecta with a relatively small launch angle. Redistribution of the static earth pressure (blast-induced arching effect) in deep-buried, fully confined explosion events under hypergravity is observed. The friction between sand particles is significantly enhanced by the hypergravity to serve as the supporting arch springing. Conceptual analysis is conducted to further reveal the mechanism of the blast-induced arching effect based on the trapdoor test from three aspects of displacement mode, stress development, and post-detonation stress distribution.\",\"PeriodicalId\":48816,\"journal\":{\"name\":\"International Journal of Physical Modelling in Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Modelling in Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jphmg.22.00068\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jphmg.22.00068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过离心模型试验研究了干砂在爆炸荷载作用下的动力响应。研究了冲击波在干砂中的传播特性和传播模式。仔细研究了科里奥利效应对爆坑形成的影响,并给出了理论和实验结果,结果一致。在爆炸引起的成坑过程中,出砂同时受到水平和垂直科里奥利力的作用;前者直接决定了水平运动的偏移量,而后者通过改变飞行时间来影响粒子的运动,并且只有在发射角度相对较小的土壤喷出物中才能明显观察到科里奥利对坑洞的影响。在超重力条件下,观察了深埋、全封闭爆炸事件中静土压力(爆炸引起的拱效应)的重新分布。作为支撑拱的超重力作用显著增强了砂粒之间的摩擦力。在活板门试验的基础上,从位移模式、应力发展和爆后应力分布三个方面进行了概念分析,进一步揭示了爆炸起拱效应的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geotechnical centrifuge modelling of blast effects in dry sand: Coriolis effect and soil arching
Centrifuge model tests are performed to investigate the dynamic response of dry sand under blast loading. The characteristics and propagation mode of blast waves in dry sand are studied. The Coriolis effect on blast-induced cratering is carefully scrutinized, and both the theoretical and experimental results are provided and agree with each other. In the explosion-induced cratering process, the sand ejecta is subjected to horizontal and vertical Coriolis forces simultaneously; the former directly determines the horizontal motion offset, while the latter affects the particle motion by altering the flight time, and the Coriolis effect on cratering can only be observed apparently for soil ejecta with a relatively small launch angle. Redistribution of the static earth pressure (blast-induced arching effect) in deep-buried, fully confined explosion events under hypergravity is observed. The friction between sand particles is significantly enhanced by the hypergravity to serve as the supporting arch springing. Conceptual analysis is conducted to further reveal the mechanism of the blast-induced arching effect based on the trapdoor test from three aspects of displacement mode, stress development, and post-detonation stress distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
15.80%
发文量
26
期刊介绍: International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信