{"title":"HH80-81射流的热辐射和非热辐射建模","authors":"Sreelekshmi Mohan, S. Vig, S. Mandal","doi":"10.1007/s12036-023-09947-7","DOIUrl":null,"url":null,"abstract":"<div><p>Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of <span>\\(10^3\\)</span>–<span>\\(10^5\\)</span> cm<span>\\(^{-3}\\)</span>, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of <span>\\(0.01^{\\circ }\\)</span>–<span>\\(0.1^{\\circ }\\)</span> and <span>\\(10^{-7}\\)</span>–<span>\\(10^{-4}\\)</span>, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to <span>\\(+\\)</span>0.11 within the observed frequency windows.\n</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"44 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12036-023-09947-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling of thermal and non-thermal radio emission from HH80-81 jet\",\"authors\":\"Sreelekshmi Mohan, S. Vig, S. Mandal\",\"doi\":\"10.1007/s12036-023-09947-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of <span>\\\\(10^3\\\\)</span>–<span>\\\\(10^5\\\\)</span> cm<span>\\\\(^{-3}\\\\)</span>, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of <span>\\\\(0.01^{\\\\circ }\\\\)</span>–<span>\\\\(0.1^{\\\\circ }\\\\)</span> and <span>\\\\(10^{-7}\\\\)</span>–<span>\\\\(10^{-4}\\\\)</span>, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to <span>\\\\(+\\\\)</span>0.11 within the observed frequency windows.\\n</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12036-023-09947-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-023-09947-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-023-09947-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Modeling of thermal and non-thermal radio emission from HH80-81 jet
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of \(10^3\)–\(10^5\) cm\(^{-3}\), we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of \(0.01^{\circ }\)–\(0.1^{\circ }\) and \(10^{-7}\)–\(10^{-4}\), respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to \(+\)0.11 within the observed frequency windows.
期刊介绍:
The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published.
Articles submitted as letters will be considered.