中心极限定理与第一类Stirling数的变化

IF 1 Q1 MATHEMATICS
B. Heim, M. Neuhauser
{"title":"中心极限定理与第一类Stirling数的变化","authors":"B. Heim, M. Neuhauser","doi":"10.47443/dml.2022.183","DOIUrl":null,"url":null,"abstract":"We construct a new parametrization of double sequences $\\{A_{n,k}(s)\\}_{n,k}$ between $A_{n,k}(0)= \\binom{n-1}{k-1}$ and $A_{n,k}(1)= \\frac{1}{n!}\\stirl{n}{k}$, where $\\stirl{n}{k}$ are the unsigned Stirling numbers of the first kind. For each $s$ we prove a central limit theorem and a local limit theorem. This extends the de\\,Moivre--Laplace central limit theorem and Goncharov's result, that unsigned Stirling numbers of the first kind are asymptotically normal. Herewith, we provide several applications.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations of central limit theorems and Stirling numbers of the first kind\",\"authors\":\"B. Heim, M. Neuhauser\",\"doi\":\"10.47443/dml.2022.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a new parametrization of double sequences $\\\\{A_{n,k}(s)\\\\}_{n,k}$ between $A_{n,k}(0)= \\\\binom{n-1}{k-1}$ and $A_{n,k}(1)= \\\\frac{1}{n!}\\\\stirl{n}{k}$, where $\\\\stirl{n}{k}$ are the unsigned Stirling numbers of the first kind. For each $s$ we prove a central limit theorem and a local limit theorem. This extends the de\\\\,Moivre--Laplace central limit theorem and Goncharov's result, that unsigned Stirling numbers of the first kind are asymptotically normal. Herewith, we provide several applications.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了$a_{n,k}(0)=\binom{n-1}{k-1}$和$a_(n,k)(1)=\frac{1}{n!}\strl{n}{k}$之间的双序列$\。对于每个$s$,我们证明了一个中心极限定理和一个局部极限定理。这推广了de,Moivre-Laplace中心极限定理和Goncharov的结果,即第一类无符号Stirling数是渐近正态的。在此,我们提供了几个应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variations of central limit theorems and Stirling numbers of the first kind
We construct a new parametrization of double sequences $\{A_{n,k}(s)\}_{n,k}$ between $A_{n,k}(0)= \binom{n-1}{k-1}$ and $A_{n,k}(1)= \frac{1}{n!}\stirl{n}{k}$, where $\stirl{n}{k}$ are the unsigned Stirling numbers of the first kind. For each $s$ we prove a central limit theorem and a local limit theorem. This extends the de\,Moivre--Laplace central limit theorem and Goncharov's result, that unsigned Stirling numbers of the first kind are asymptotically normal. Herewith, we provide several applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信