Frances A. Whitehead , Mary R. Williams , Michael E. Sigman
{"title":"火灾碎片分析中的分析师和机器学习观点","authors":"Frances A. Whitehead , Mary R. Williams , Michael E. Sigman","doi":"10.1016/j.forc.2023.100517","DOIUrl":null,"url":null,"abstract":"<div><p>The principles of subjective logic are applied to the competing propositions that ignitable liquid residue (ILR) is present, or is not present, in a fire debris sample. Analysts’ estimates of the strength of evidence coupled with their perceived levels of uncertainty combine to define a “fuzzy category” that is mapped to an opinion triangle. The opinion is expressed as a tuple consisting of the belief mass, disbelief mass, uncertainty and base rate. A workflow is introduced to guide the analyst through the fuzzy category formulation. Opinion tuples are also generated from a set of machine learning (ML) models trained on an ensemble of data sets. A set of 20 single-blind fire debris samples were analyzed by each of the authors, and by an ensemble of optimized support vector machine models. The opinions of each analyst and the ML ensemble were compared and combined to obtain an opinion representing a consensus of each analyst and the ML. The opinions of the analysts and ML were projected onto the zero-uncertainty axis and the projected opinion probabilities were used as scores to construct an receiver operating characteristic (ROC) curve. The area under the ROC curves for each analyst were greater than or equal to 0.90 and the area under the ML ROC curve was 0.96. The methodology is widely applicable to forensic problems that can be represented as a pair of mutually exclusive and exhaustive hypotheses.</p></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"35 ","pages":"Article 100517"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyst and machine learning opinions in fire debris analysis\",\"authors\":\"Frances A. Whitehead , Mary R. Williams , Michael E. Sigman\",\"doi\":\"10.1016/j.forc.2023.100517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The principles of subjective logic are applied to the competing propositions that ignitable liquid residue (ILR) is present, or is not present, in a fire debris sample. Analysts’ estimates of the strength of evidence coupled with their perceived levels of uncertainty combine to define a “fuzzy category” that is mapped to an opinion triangle. The opinion is expressed as a tuple consisting of the belief mass, disbelief mass, uncertainty and base rate. A workflow is introduced to guide the analyst through the fuzzy category formulation. Opinion tuples are also generated from a set of machine learning (ML) models trained on an ensemble of data sets. A set of 20 single-blind fire debris samples were analyzed by each of the authors, and by an ensemble of optimized support vector machine models. The opinions of each analyst and the ML ensemble were compared and combined to obtain an opinion representing a consensus of each analyst and the ML. The opinions of the analysts and ML were projected onto the zero-uncertainty axis and the projected opinion probabilities were used as scores to construct an receiver operating characteristic (ROC) curve. The area under the ROC curves for each analyst were greater than or equal to 0.90 and the area under the ML ROC curve was 0.96. The methodology is widely applicable to forensic problems that can be represented as a pair of mutually exclusive and exhaustive hypotheses.</p></div>\",\"PeriodicalId\":324,\"journal\":{\"name\":\"Forensic Chemistry\",\"volume\":\"35 \",\"pages\":\"Article 100517\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246817092300053X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246817092300053X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Analyst and machine learning opinions in fire debris analysis
The principles of subjective logic are applied to the competing propositions that ignitable liquid residue (ILR) is present, or is not present, in a fire debris sample. Analysts’ estimates of the strength of evidence coupled with their perceived levels of uncertainty combine to define a “fuzzy category” that is mapped to an opinion triangle. The opinion is expressed as a tuple consisting of the belief mass, disbelief mass, uncertainty and base rate. A workflow is introduced to guide the analyst through the fuzzy category formulation. Opinion tuples are also generated from a set of machine learning (ML) models trained on an ensemble of data sets. A set of 20 single-blind fire debris samples were analyzed by each of the authors, and by an ensemble of optimized support vector machine models. The opinions of each analyst and the ML ensemble were compared and combined to obtain an opinion representing a consensus of each analyst and the ML. The opinions of the analysts and ML were projected onto the zero-uncertainty axis and the projected opinion probabilities were used as scores to construct an receiver operating characteristic (ROC) curve. The area under the ROC curves for each analyst were greater than or equal to 0.90 and the area under the ML ROC curve was 0.96. The methodology is widely applicable to forensic problems that can be represented as a pair of mutually exclusive and exhaustive hypotheses.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.