{"title":"具有突变、休眠和转移的细菌群体的随机自适应动力学模型","authors":"J. Blath, T. Paul, Andr'as T'obi'as","doi":"10.30757/alea.v20-12","DOIUrl":null,"url":null,"abstract":"This paper introduces a stochastic adaptive dynamics model for the interplay of several crucial traits and mechanisms in bacterial evolution, namely dormancy, horizontal gene transfer (HGT), mutation and competition. In particular, it combines the recent model of Champagnat, M\\'el\\'eard and Tran (2021) involving HGT with the model for competition-induced dormancy of Blath and T\\'obi\\'as (2020). Our main result is a convergence theorem which describes the evolution of the different traits in the population on a `doubly logarithmic scale' as piece-wise affine functions. Interestingly, even for a relatively small trait space, the limiting process exhibits a non-monotone dependence of the success of the dormancy trait on the dormancy initiation probability. Further, the model establishes a new `approximate coexistence regime' for multiple traits that has not been observed in previous literature.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A stochastic adaptive dynamics model for bacterial populations with mutation, dormancy and transfer\",\"authors\":\"J. Blath, T. Paul, Andr'as T'obi'as\",\"doi\":\"10.30757/alea.v20-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a stochastic adaptive dynamics model for the interplay of several crucial traits and mechanisms in bacterial evolution, namely dormancy, horizontal gene transfer (HGT), mutation and competition. In particular, it combines the recent model of Champagnat, M\\\\'el\\\\'eard and Tran (2021) involving HGT with the model for competition-induced dormancy of Blath and T\\\\'obi\\\\'as (2020). Our main result is a convergence theorem which describes the evolution of the different traits in the population on a `doubly logarithmic scale' as piece-wise affine functions. Interestingly, even for a relatively small trait space, the limiting process exhibits a non-monotone dependence of the success of the dormancy trait on the dormancy initiation probability. Further, the model establishes a new `approximate coexistence regime' for multiple traits that has not been observed in previous literature.\",\"PeriodicalId\":49244,\"journal\":{\"name\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alea-Latin American Journal of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-12\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-12","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A stochastic adaptive dynamics model for bacterial populations with mutation, dormancy and transfer
This paper introduces a stochastic adaptive dynamics model for the interplay of several crucial traits and mechanisms in bacterial evolution, namely dormancy, horizontal gene transfer (HGT), mutation and competition. In particular, it combines the recent model of Champagnat, M\'el\'eard and Tran (2021) involving HGT with the model for competition-induced dormancy of Blath and T\'obi\'as (2020). Our main result is a convergence theorem which describes the evolution of the different traits in the population on a `doubly logarithmic scale' as piece-wise affine functions. Interestingly, even for a relatively small trait space, the limiting process exhibits a non-monotone dependence of the success of the dormancy trait on the dormancy initiation probability. Further, the model establishes a new `approximate coexistence regime' for multiple traits that has not been observed in previous literature.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.