摩擦接触中作为变形特性的润滑脂动态硬度的测定

O. Dykha, A. Staryi, V. Dytyniuk, M. Dykha
{"title":"摩擦接触中作为变形特性的润滑脂动态硬度的测定","authors":"O. Dykha, A. Staryi, V. Dytyniuk, M. Dykha","doi":"10.31891/2079-1372-2022-103-1-65-75","DOIUrl":null,"url":null,"abstract":"The efficiency of plastic oil is determined by the duration of its retention on the surface. Evaluation of the effectiveness of plastic lubricants depends on their mechanical properties. It is proposed to use the dependence of hardness on time when pressing a spherical indenter as one of the basic characteristics of the mechanical properties of plastic oils. The method of determining the function of oil hardness is based on the mechanics of contact interaction of a solid ball and a plane presented in this work, which has the property of creep according to the flow theory. One of the main methods of testing the deformation properties of plastic lubricants is to determine the number of penetrations. The number of oil penetrations is determined by the depth of indentation of the indenter; more informative for such a process is the ultimate pressure (hardness), which actually reflects the phenomenon of resistance to indenter indentation in the material. For uniform distribution of pressure under a spherical indenter the technique of construction of function of dynamic hardness of plastic materials is defined and on the basis of tests results of construction of dynamic hardness are received. Tests on contact creep of plastic lubricants are carried out, functions of dynamic hardness are received and the analysis of influence of character of change of dynamic hardness on wear processes in the presence of lubricants is carried out. To analyze the influence of deformation properties on the tribological properties of lubricants, comparative tests of the two above-mentioned types of lubricants on a four-ball friction device were performed. It was found that Litol-24 oil has the best wear resistance. The nonlinear period of running-in for this oil is practically absent that, obviously, under the given conditions of tests is connected with more stable in time deformation properties.","PeriodicalId":34638,"journal":{"name":"Problemi tribologii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the dynamic hardness of greases as a characteristic of deformation properties in a tribocontact\",\"authors\":\"O. Dykha, A. Staryi, V. Dytyniuk, M. Dykha\",\"doi\":\"10.31891/2079-1372-2022-103-1-65-75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of plastic oil is determined by the duration of its retention on the surface. Evaluation of the effectiveness of plastic lubricants depends on their mechanical properties. It is proposed to use the dependence of hardness on time when pressing a spherical indenter as one of the basic characteristics of the mechanical properties of plastic oils. The method of determining the function of oil hardness is based on the mechanics of contact interaction of a solid ball and a plane presented in this work, which has the property of creep according to the flow theory. One of the main methods of testing the deformation properties of plastic lubricants is to determine the number of penetrations. The number of oil penetrations is determined by the depth of indentation of the indenter; more informative for such a process is the ultimate pressure (hardness), which actually reflects the phenomenon of resistance to indenter indentation in the material. For uniform distribution of pressure under a spherical indenter the technique of construction of function of dynamic hardness of plastic materials is defined and on the basis of tests results of construction of dynamic hardness are received. Tests on contact creep of plastic lubricants are carried out, functions of dynamic hardness are received and the analysis of influence of character of change of dynamic hardness on wear processes in the presence of lubricants is carried out. To analyze the influence of deformation properties on the tribological properties of lubricants, comparative tests of the two above-mentioned types of lubricants on a four-ball friction device were performed. It was found that Litol-24 oil has the best wear resistance. The nonlinear period of running-in for this oil is practically absent that, obviously, under the given conditions of tests is connected with more stable in time deformation properties.\",\"PeriodicalId\":34638,\"journal\":{\"name\":\"Problemi tribologii\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problemi tribologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31891/2079-1372-2022-103-1-65-75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemi tribologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31891/2079-1372-2022-103-1-65-75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

塑料油的效率由其在表面上的停留时间决定。塑料润滑剂的有效性评估取决于其机械性能。提出将压球面压头时硬度随时间的变化作为塑料油力学性能的基本特征之一。确定油硬度函数的方法是基于本文提出的固体球与平面的接触相互作用力学,该力学根据流动理论具有蠕变性质。测试塑料润滑剂变形性能的主要方法之一是确定渗透次数。油渗透的数量由压头的压痕深度决定;对于这种过程,更具信息性的是极限压力(硬度),它实际上反映了材料中对压头压痕的阻力现象。为了使球形压头下的压力均匀分布,定义了塑性材料动态硬度函数的构造技术,并在试验的基础上获得了动态硬度的构造结果。对塑料润滑剂的接触蠕变进行了试验,得到了动态硬度的函数,并分析了润滑剂存在下动态硬度变化特性对磨损过程的影响。为了分析变形性能对润滑剂摩擦学性能的影响,在四球摩擦装置上对上述两种润滑剂进行了对比试验。结果表明,Litol-24润滑油具有最佳的耐磨性。这种油的非线性磨合期实际上是不存在的,显然,在给定的试验条件下,它与更稳定的时间变形特性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the dynamic hardness of greases as a characteristic of deformation properties in a tribocontact
The efficiency of plastic oil is determined by the duration of its retention on the surface. Evaluation of the effectiveness of plastic lubricants depends on their mechanical properties. It is proposed to use the dependence of hardness on time when pressing a spherical indenter as one of the basic characteristics of the mechanical properties of plastic oils. The method of determining the function of oil hardness is based on the mechanics of contact interaction of a solid ball and a plane presented in this work, which has the property of creep according to the flow theory. One of the main methods of testing the deformation properties of plastic lubricants is to determine the number of penetrations. The number of oil penetrations is determined by the depth of indentation of the indenter; more informative for such a process is the ultimate pressure (hardness), which actually reflects the phenomenon of resistance to indenter indentation in the material. For uniform distribution of pressure under a spherical indenter the technique of construction of function of dynamic hardness of plastic materials is defined and on the basis of tests results of construction of dynamic hardness are received. Tests on contact creep of plastic lubricants are carried out, functions of dynamic hardness are received and the analysis of influence of character of change of dynamic hardness on wear processes in the presence of lubricants is carried out. To analyze the influence of deformation properties on the tribological properties of lubricants, comparative tests of the two above-mentioned types of lubricants on a four-ball friction device were performed. It was found that Litol-24 oil has the best wear resistance. The nonlinear period of running-in for this oil is practically absent that, obviously, under the given conditions of tests is connected with more stable in time deformation properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
28
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信