平面多项式微分系统极限环存在性的判据

IF 0.8 4区 数学 Q2 MATHEMATICS
Jaume Giné , Maite Grau , Jaume Llibre
{"title":"平面多项式微分系统极限环存在性的判据","authors":"Jaume Giné ,&nbsp;Maite Grau ,&nbsp;Jaume Llibre","doi":"10.1016/j.exmath.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>We summarize known criteria for the non-existence, existence and on the number of limit cycles of autonomous real planar polynomial differential systems, and also provide new results. We give examples of systems which realize the maximum number of limit cycles provided by each criterion. In particular we consider the class of differential systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span> are natural numbers with <span><math><mrow><mi>m</mi><mo>&gt;</mo><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span>, are quasi-homogeneous vector fields.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0723086922000615/pdfft?md5=9f77297b6d57038062dce5db2b1e32ca&pid=1-s2.0-S0723086922000615-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Criteria on the existence of limit cycles in planar polynomial differential systems\",\"authors\":\"Jaume Giné ,&nbsp;Maite Grau ,&nbsp;Jaume Llibre\",\"doi\":\"10.1016/j.exmath.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We summarize known criteria for the non-existence, existence and on the number of limit cycles of autonomous real planar polynomial differential systems, and also provide new results. We give examples of systems which realize the maximum number of limit cycles provided by each criterion. In particular we consider the class of differential systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span> are natural numbers with <span><math><mrow><mi>m</mi><mo>&gt;</mo><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span>, are quasi-homogeneous vector fields.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000615/pdfft?md5=9f77297b6d57038062dce5db2b1e32ca&pid=1-s2.0-S0723086922000615-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000615\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

总结了自治实数平面多项式微分系统的不存在性、存在性和极限环数的判据,并给出了新的结果。给出了实现每个准则所提供的最大极限环数的系统实例。特别地,我们考虑了一类形式为: =Pn(x,y)+Pm(x,y), =Qn(x,y)+Qm(x,y)的微分系统,其中n,m为自然数,且n≥1,对于i=n,m, (Pi,Qi)为拟齐次向量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criteria on the existence of limit cycles in planar polynomial differential systems

We summarize known criteria for the non-existence, existence and on the number of limit cycles of autonomous real planar polynomial differential systems, and also provide new results. We give examples of systems which realize the maximum number of limit cycles provided by each criterion. In particular we consider the class of differential systems of the form ẋ=Pn(x,y)+Pm(x,y),ẏ=Qn(x,y)+Qm(x,y), where n,m are natural numbers with m>n1 and (Pi,Qi) for i=n,m, are quasi-homogeneous vector fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信