{"title":"平面多项式微分系统极限环存在性的判据","authors":"Jaume Giné , Maite Grau , Jaume Llibre","doi":"10.1016/j.exmath.2022.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>We summarize known criteria for the non-existence, existence and on the number of limit cycles of autonomous real planar polynomial differential systems, and also provide new results. We give examples of systems which realize the maximum number of limit cycles provided by each criterion. In particular we consider the class of differential systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span> are natural numbers with <span><math><mrow><mi>m</mi><mo>></mo><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span>, are quasi-homogeneous vector fields.</p></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0723086922000615/pdfft?md5=9f77297b6d57038062dce5db2b1e32ca&pid=1-s2.0-S0723086922000615-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Criteria on the existence of limit cycles in planar polynomial differential systems\",\"authors\":\"Jaume Giné , Maite Grau , Jaume Llibre\",\"doi\":\"10.1016/j.exmath.2022.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We summarize known criteria for the non-existence, existence and on the number of limit cycles of autonomous real planar polynomial differential systems, and also provide new results. We give examples of systems which realize the maximum number of limit cycles provided by each criterion. In particular we consider the class of differential systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span> are natural numbers with <span><math><mrow><mi>m</mi><mo>></mo><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>i</mi><mo>=</mo><mi>n</mi><mo>,</mo><mi>m</mi></mrow></math></span>, are quasi-homogeneous vector fields.</p></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000615/pdfft?md5=9f77297b6d57038062dce5db2b1e32ca&pid=1-s2.0-S0723086922000615-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086922000615\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086922000615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Criteria on the existence of limit cycles in planar polynomial differential systems
We summarize known criteria for the non-existence, existence and on the number of limit cycles of autonomous real planar polynomial differential systems, and also provide new results. We give examples of systems which realize the maximum number of limit cycles provided by each criterion. In particular we consider the class of differential systems of the form where are natural numbers with and for , are quasi-homogeneous vector fields.
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.