{"title":"耦合Kähler–Einstein度量的形变","authors":"Satoshi X. Nakamura","doi":"10.2969/JMSJ/84408440","DOIUrl":null,"url":null,"abstract":"The notion of coupled Kähler-Einstein metrics was introduced recently by Hultgren-WittNyström. In this paper we discuss deformation of a coupled KählerEinstein metric on a Fano manifold. We obtain a necessary and sufficient condition for a coupled Kähler-Einstein metric to be deformed to another coupled Kähler-Einstein metric for a Fano manifold admitting non-trivial holomorphic vector fields. In addition we also discuss deformation for a coupled Käher-Einstein metric on a Fano manifold when the complex structure varies.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deformation for coupled Kähler–Einstein metrics\",\"authors\":\"Satoshi X. Nakamura\",\"doi\":\"10.2969/JMSJ/84408440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of coupled Kähler-Einstein metrics was introduced recently by Hultgren-WittNyström. In this paper we discuss deformation of a coupled KählerEinstein metric on a Fano manifold. We obtain a necessary and sufficient condition for a coupled Kähler-Einstein metric to be deformed to another coupled Kähler-Einstein metric for a Fano manifold admitting non-trivial holomorphic vector fields. In addition we also discuss deformation for a coupled Käher-Einstein metric on a Fano manifold when the complex structure varies.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/84408440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/84408440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The notion of coupled Kähler-Einstein metrics was introduced recently by Hultgren-WittNyström. In this paper we discuss deformation of a coupled KählerEinstein metric on a Fano manifold. We obtain a necessary and sufficient condition for a coupled Kähler-Einstein metric to be deformed to another coupled Kähler-Einstein metric for a Fano manifold admitting non-trivial holomorphic vector fields. In addition we also discuss deformation for a coupled Käher-Einstein metric on a Fano manifold when the complex structure varies.