耦合Kähler–Einstein度量的形变

Pub Date : 2021-05-26 DOI:10.2969/JMSJ/84408440
Satoshi X. Nakamura
{"title":"耦合Kähler–Einstein度量的形变","authors":"Satoshi X. Nakamura","doi":"10.2969/JMSJ/84408440","DOIUrl":null,"url":null,"abstract":"The notion of coupled Kähler-Einstein metrics was introduced recently by Hultgren-WittNyström. In this paper we discuss deformation of a coupled KählerEinstein metric on a Fano manifold. We obtain a necessary and sufficient condition for a coupled Kähler-Einstein metric to be deformed to another coupled Kähler-Einstein metric for a Fano manifold admitting non-trivial holomorphic vector fields. In addition we also discuss deformation for a coupled Käher-Einstein metric on a Fano manifold when the complex structure varies.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deformation for coupled Kähler–Einstein metrics\",\"authors\":\"Satoshi X. Nakamura\",\"doi\":\"10.2969/JMSJ/84408440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of coupled Kähler-Einstein metrics was introduced recently by Hultgren-WittNyström. In this paper we discuss deformation of a coupled KählerEinstein metric on a Fano manifold. We obtain a necessary and sufficient condition for a coupled Kähler-Einstein metric to be deformed to another coupled Kähler-Einstein metric for a Fano manifold admitting non-trivial holomorphic vector fields. In addition we also discuss deformation for a coupled Käher-Einstein metric on a Fano manifold when the complex structure varies.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/84408440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/84408440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

耦合Kähler-Einstein度量的概念最近由Hultgren-WittNyström提出。本文讨论Fano流形上耦合KählerEinstein度量的变形。对于非平凡全纯向量场的Fano流形,我们得到了一个耦合的Kähler-Einstein度量变形为另一个耦合Käler-Enstein度量的充要条件。此外,我们还讨论了Fano流形上耦合Käher-Enstein度量在复杂结构变化时的变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Deformation for coupled Kähler–Einstein metrics
The notion of coupled Kähler-Einstein metrics was introduced recently by Hultgren-WittNyström. In this paper we discuss deformation of a coupled KählerEinstein metric on a Fano manifold. We obtain a necessary and sufficient condition for a coupled Kähler-Einstein metric to be deformed to another coupled Kähler-Einstein metric for a Fano manifold admitting non-trivial holomorphic vector fields. In addition we also discuss deformation for a coupled Käher-Einstein metric on a Fano manifold when the complex structure varies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信