{"title":"米麦芽:合成n -取代吡咯的溶剂催化剂","authors":"B. Banik, R. N. Yadav, T. Rohand","doi":"10.2174/2213337210666230516151722","DOIUrl":null,"url":null,"abstract":"\n\nThe synthesis of diverse N-substituted pyrroles utilizing rice malt is identified. The reaction of hexane-2,5-dione with various primary amines develops the intriguing pyrrole scaffold in moderate to good yields. Method: The reaction was carried out at room to ambient temperature in an extremely environmentally benign condition, without the need for any additional solvents or catalysts. Result: In the synthesis of N-derivatized pyrroles, several 1°amines, both cyclic and acyclic residue, have been accomplished. Conclusion: To the best of my knowledge, no study has been reported so far based on Paal-Knorr pyrrole synthesis utilizing rice malt as a catalyst and solvent.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rice Malt: A Solvent-Catalyst for the Synthesis of N-Substituted Pyrroles\",\"authors\":\"B. Banik, R. N. Yadav, T. Rohand\",\"doi\":\"10.2174/2213337210666230516151722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe synthesis of diverse N-substituted pyrroles utilizing rice malt is identified. The reaction of hexane-2,5-dione with various primary amines develops the intriguing pyrrole scaffold in moderate to good yields. Method: The reaction was carried out at room to ambient temperature in an extremely environmentally benign condition, without the need for any additional solvents or catalysts. Result: In the synthesis of N-derivatized pyrroles, several 1°amines, both cyclic and acyclic residue, have been accomplished. Conclusion: To the best of my knowledge, no study has been reported so far based on Paal-Knorr pyrrole synthesis utilizing rice malt as a catalyst and solvent.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230516151722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230516151722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Rice Malt: A Solvent-Catalyst for the Synthesis of N-Substituted Pyrroles
The synthesis of diverse N-substituted pyrroles utilizing rice malt is identified. The reaction of hexane-2,5-dione with various primary amines develops the intriguing pyrrole scaffold in moderate to good yields. Method: The reaction was carried out at room to ambient temperature in an extremely environmentally benign condition, without the need for any additional solvents or catalysts. Result: In the synthesis of N-derivatized pyrroles, several 1°amines, both cyclic and acyclic residue, have been accomplished. Conclusion: To the best of my knowledge, no study has been reported so far based on Paal-Knorr pyrrole synthesis utilizing rice malt as a catalyst and solvent.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.