M. Botchev, S. Kabanikhin, M. Shishlenin, E. Tyrtyshnikov
{"title":"三维泊松方程的柯西问题:Landweber迭代与水平对角化拟合方法","authors":"M. Botchev, S. Kabanikhin, M. Shishlenin, E. Tyrtyshnikov","doi":"10.1515/jiip-2022-0092","DOIUrl":null,"url":null,"abstract":"Abstract The horizontally diagonalize and fit (HDF) method is proposed to solve the ill-posed Cauchy problem for the three-dimensional Poisson equation with data given on the part of the boundary (a continuation problem). The HDF method consists in discretization over horizontal variables and transformation of the system of differential equations to a diagonal form. This allows to uncouple the original three-dimensional continuation problem into a moderate number of one-dimensional problems in the vertical dimension. The problem size reduction can be carried taking into account the noise level, so that the number k of one-dimensional problems appears to be a regularization parameter. Our experiments show that HDF is applicable to large-scale problems and for n ≤ 2500 {n\\leq 2500} is significantly more efficient than Landweber iteration.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"31 1","pages":"203 - 221"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Cauchy problem for the 3D Poisson equation: Landweber iteration vs. horizontally diagonalize and fit method\",\"authors\":\"M. Botchev, S. Kabanikhin, M. Shishlenin, E. Tyrtyshnikov\",\"doi\":\"10.1515/jiip-2022-0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The horizontally diagonalize and fit (HDF) method is proposed to solve the ill-posed Cauchy problem for the three-dimensional Poisson equation with data given on the part of the boundary (a continuation problem). The HDF method consists in discretization over horizontal variables and transformation of the system of differential equations to a diagonal form. This allows to uncouple the original three-dimensional continuation problem into a moderate number of one-dimensional problems in the vertical dimension. The problem size reduction can be carried taking into account the noise level, so that the number k of one-dimensional problems appears to be a regularization parameter. Our experiments show that HDF is applicable to large-scale problems and for n ≤ 2500 {n\\\\leq 2500} is significantly more efficient than Landweber iteration.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"31 1\",\"pages\":\"203 - 221\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0092\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0092","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Cauchy problem for the 3D Poisson equation: Landweber iteration vs. horizontally diagonalize and fit method
Abstract The horizontally diagonalize and fit (HDF) method is proposed to solve the ill-posed Cauchy problem for the three-dimensional Poisson equation with data given on the part of the boundary (a continuation problem). The HDF method consists in discretization over horizontal variables and transformation of the system of differential equations to a diagonal form. This allows to uncouple the original three-dimensional continuation problem into a moderate number of one-dimensional problems in the vertical dimension. The problem size reduction can be carried taking into account the noise level, so that the number k of one-dimensional problems appears to be a regularization parameter. Our experiments show that HDF is applicable to large-scale problems and for n ≤ 2500 {n\leq 2500} is significantly more efficient than Landweber iteration.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography