F. Effah, Daniel Kwegyir, D. Opoku, Peter Asigri, E. Frimpong
{"title":"基于前馈人工神经网络的电动汽车短期充电需求预测","authors":"F. Effah, Daniel Kwegyir, D. Opoku, Peter Asigri, E. Frimpong","doi":"10.25077/jnte.v12n2.1094.2023","DOIUrl":null,"url":null,"abstract":"The global increase in greenhouse gas emissions from automobiles has brought about the manufacture and usage of large quantities of electric vehicles (EVs). However, to ensure proper integration of EVs into the grid, there is a need to forecast the charging demand of EVs accurately. This paper presents a short-term electric vehicle charging demand forecast using a feedforward artificial neural network optimized with a modified local leader phase spider monkey optimization (MLLP-SMO) algorithm, a proposed variant of spider monkey optimization. A proportionate fitness selection is employed to improve the update process of the local leader phase of the spider monkey optimization. The proposed algorithm trains a feedforward neural network to forecast electric vehicle charging demand. The effectiveness of the proposed forecasting model was tested and validated with electric vehicle public charging data from the United Kingdom Power Networks Low Carbon London Project. The model's performance was compared to a feedforward neural network trained with particle swarm optimization, genetic algorithm, classical spider monkey optimization, and two conventional forecasting models, multi-linear regression and Monte Carlo simulation. The performance of the proposed forecasting model was assessed using the mean absolute percentage error of forecast and forecasting accuracy. The model produced a forecast accuracy and mean absolute percentage error of 99.88% and 3.384%, respectively. The results show that MLLP-SMO as a trainer predicted better than the other forecasting models and met industry standard forecast accuracy.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term EV Charging Demand Forecast with Feedforward Artificial Neural Network\",\"authors\":\"F. Effah, Daniel Kwegyir, D. Opoku, Peter Asigri, E. Frimpong\",\"doi\":\"10.25077/jnte.v12n2.1094.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global increase in greenhouse gas emissions from automobiles has brought about the manufacture and usage of large quantities of electric vehicles (EVs). However, to ensure proper integration of EVs into the grid, there is a need to forecast the charging demand of EVs accurately. This paper presents a short-term electric vehicle charging demand forecast using a feedforward artificial neural network optimized with a modified local leader phase spider monkey optimization (MLLP-SMO) algorithm, a proposed variant of spider monkey optimization. A proportionate fitness selection is employed to improve the update process of the local leader phase of the spider monkey optimization. The proposed algorithm trains a feedforward neural network to forecast electric vehicle charging demand. The effectiveness of the proposed forecasting model was tested and validated with electric vehicle public charging data from the United Kingdom Power Networks Low Carbon London Project. The model's performance was compared to a feedforward neural network trained with particle swarm optimization, genetic algorithm, classical spider monkey optimization, and two conventional forecasting models, multi-linear regression and Monte Carlo simulation. The performance of the proposed forecasting model was assessed using the mean absolute percentage error of forecast and forecasting accuracy. The model produced a forecast accuracy and mean absolute percentage error of 99.88% and 3.384%, respectively. The results show that MLLP-SMO as a trainer predicted better than the other forecasting models and met industry standard forecast accuracy.\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v12n2.1094.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1094.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-Term EV Charging Demand Forecast with Feedforward Artificial Neural Network
The global increase in greenhouse gas emissions from automobiles has brought about the manufacture and usage of large quantities of electric vehicles (EVs). However, to ensure proper integration of EVs into the grid, there is a need to forecast the charging demand of EVs accurately. This paper presents a short-term electric vehicle charging demand forecast using a feedforward artificial neural network optimized with a modified local leader phase spider monkey optimization (MLLP-SMO) algorithm, a proposed variant of spider monkey optimization. A proportionate fitness selection is employed to improve the update process of the local leader phase of the spider monkey optimization. The proposed algorithm trains a feedforward neural network to forecast electric vehicle charging demand. The effectiveness of the proposed forecasting model was tested and validated with electric vehicle public charging data from the United Kingdom Power Networks Low Carbon London Project. The model's performance was compared to a feedforward neural network trained with particle swarm optimization, genetic algorithm, classical spider monkey optimization, and two conventional forecasting models, multi-linear regression and Monte Carlo simulation. The performance of the proposed forecasting model was assessed using the mean absolute percentage error of forecast and forecasting accuracy. The model produced a forecast accuracy and mean absolute percentage error of 99.88% and 3.384%, respectively. The results show that MLLP-SMO as a trainer predicted better than the other forecasting models and met industry standard forecast accuracy.