{"title":"基于数据增量的可读性自动评估方法","authors":"Luiza Cunha de Menezes, A. Paes, M. J. B. Finatto","doi":"10.14393/dlv17a2023-21","DOIUrl":null,"url":null,"abstract":"Embora estudos sobre como medir a leiturabilidade de um texto remontem ao século passado, ainda não há um consenso sobre quais seriam as melhores métricas. Ferramentas de Processamento de Linguagem Natural (PLN) podem apoiar esta tarefa, mas dependem de um grande número de amostras para treinamento, o que é uma barreira para seu avanço. O objetivo principal deste artigo é analisar o impacto de determinados métodos de aumento de dados (AD) para enfrentar essa barreira e apoiar a classificação de leiturabilidade no português brasileiro (PB). Para tanto, foi estabelecido um corpus pareado e classificado, com textos originais complexos e suas versões simplificadas sobre temas de Ciências, desenvolvido por linguistas. Esse corpus foi aumentado com técnicas agnósticas de AD: substituição por sinônimos (SS) e retrotradução (RT). Foram avaliados 75 modelos com diferentes técnicas e combinações de atributos de entrada. O melhor resultado obtido para o conjunto dos textos do corpus sem aumento foi de 94,0% de taxa de acerto. Este resultado subiu para 95,2% combinando-se as métricas do sistema NILC-Metrix com representações vetoriais de texto contextualizadas. Quando comparados a outros trabalhos voltados para o PB, a metodologia proposta gerou um aumento na taxa de acerto em um domínio distinto ao de treino. Conclui-se que o modelo treinado com AD demonstra capacidade igual ou superior àqueles treinados sem aumento e, ao mesmo tempo, apresenta maior generalização quando aplicado a outros domínios.","PeriodicalId":53262,"journal":{"name":"Dominios de Lingugem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abordagem baseada em Aumento de Dados para Avaliação Automática de Leiturabilidade\",\"authors\":\"Luiza Cunha de Menezes, A. Paes, M. J. B. Finatto\",\"doi\":\"10.14393/dlv17a2023-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embora estudos sobre como medir a leiturabilidade de um texto remontem ao século passado, ainda não há um consenso sobre quais seriam as melhores métricas. Ferramentas de Processamento de Linguagem Natural (PLN) podem apoiar esta tarefa, mas dependem de um grande número de amostras para treinamento, o que é uma barreira para seu avanço. O objetivo principal deste artigo é analisar o impacto de determinados métodos de aumento de dados (AD) para enfrentar essa barreira e apoiar a classificação de leiturabilidade no português brasileiro (PB). Para tanto, foi estabelecido um corpus pareado e classificado, com textos originais complexos e suas versões simplificadas sobre temas de Ciências, desenvolvido por linguistas. Esse corpus foi aumentado com técnicas agnósticas de AD: substituição por sinônimos (SS) e retrotradução (RT). Foram avaliados 75 modelos com diferentes técnicas e combinações de atributos de entrada. O melhor resultado obtido para o conjunto dos textos do corpus sem aumento foi de 94,0% de taxa de acerto. Este resultado subiu para 95,2% combinando-se as métricas do sistema NILC-Metrix com representações vetoriais de texto contextualizadas. Quando comparados a outros trabalhos voltados para o PB, a metodologia proposta gerou um aumento na taxa de acerto em um domínio distinto ao de treino. Conclui-se que o modelo treinado com AD demonstra capacidade igual ou superior àqueles treinados sem aumento e, ao mesmo tempo, apresenta maior generalização quando aplicado a outros domínios.\",\"PeriodicalId\":53262,\"journal\":{\"name\":\"Dominios de Lingugem\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dominios de Lingugem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14393/dlv17a2023-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dominios de Lingugem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/dlv17a2023-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abordagem baseada em Aumento de Dados para Avaliação Automática de Leiturabilidade
Embora estudos sobre como medir a leiturabilidade de um texto remontem ao século passado, ainda não há um consenso sobre quais seriam as melhores métricas. Ferramentas de Processamento de Linguagem Natural (PLN) podem apoiar esta tarefa, mas dependem de um grande número de amostras para treinamento, o que é uma barreira para seu avanço. O objetivo principal deste artigo é analisar o impacto de determinados métodos de aumento de dados (AD) para enfrentar essa barreira e apoiar a classificação de leiturabilidade no português brasileiro (PB). Para tanto, foi estabelecido um corpus pareado e classificado, com textos originais complexos e suas versões simplificadas sobre temas de Ciências, desenvolvido por linguistas. Esse corpus foi aumentado com técnicas agnósticas de AD: substituição por sinônimos (SS) e retrotradução (RT). Foram avaliados 75 modelos com diferentes técnicas e combinações de atributos de entrada. O melhor resultado obtido para o conjunto dos textos do corpus sem aumento foi de 94,0% de taxa de acerto. Este resultado subiu para 95,2% combinando-se as métricas do sistema NILC-Metrix com representações vetoriais de texto contextualizadas. Quando comparados a outros trabalhos voltados para o PB, a metodologia proposta gerou um aumento na taxa de acerto em um domínio distinto ao de treino. Conclui-se que o modelo treinado com AD demonstra capacidade igual ou superior àqueles treinados sem aumento e, ao mesmo tempo, apresenta maior generalização quando aplicado a outros domínios.