广义lisamadard型系统的若干显式振荡结果

IF 0.2 Q4 MATHEMATICS, APPLIED
Tohid Kasbi, V. Roomi, A. J. Akbarfam
{"title":"广义lisamadard型系统的若干显式振荡结果","authors":"Tohid Kasbi, V. Roomi, A. J. Akbarfam","doi":"10.1504/ijdsde.2020.10026678","DOIUrl":null,"url":null,"abstract":"In this work a generalised Lienard type system will be considered. We study the problem whether all trajectories of this system intersect the vertical isocline, which is very important in the global asymptotic stability of the origin, oscillation theory, and existence of periodic solutions. Under quite general assumptions we obtain sufficient conditions which are very sharp. We present some new conditions under which the solutions of this system are oscillatory. Some examples are provided to illustrate our results.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some explicit oscillation results for the generalised Liénard type systems\",\"authors\":\"Tohid Kasbi, V. Roomi, A. J. Akbarfam\",\"doi\":\"10.1504/ijdsde.2020.10026678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a generalised Lienard type system will be considered. We study the problem whether all trajectories of this system intersect the vertical isocline, which is very important in the global asymptotic stability of the origin, oscillation theory, and existence of periodic solutions. Under quite general assumptions we obtain sufficient conditions which are very sharp. We present some new conditions under which the solutions of this system are oscillatory. Some examples are provided to illustrate our results.\",\"PeriodicalId\":43101,\"journal\":{\"name\":\"International Journal of Dynamical Systems and Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Dynamical Systems and Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdsde.2020.10026678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdsde.2020.10026678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,将考虑一个广义的Lienard类型系统。我们研究了该系统的所有轨迹是否与垂直等斜线相交的问题,这在原点的全局渐近稳定性、振荡理论和周期解的存在性等方面具有重要意义。在非常一般的假设下,我们得到了非常尖锐的充分条件。给出了该系统解为振荡的几个新条件。给出了一些例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some explicit oscillation results for the generalised Liénard type systems
In this work a generalised Lienard type system will be considered. We study the problem whether all trajectories of this system intersect the vertical isocline, which is very important in the global asymptotic stability of the origin, oscillation theory, and existence of periodic solutions. Under quite general assumptions we obtain sufficient conditions which are very sharp. We present some new conditions under which the solutions of this system are oscillatory. Some examples are provided to illustrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
16
期刊介绍: IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信