基于困惑贝叶斯分类器的方面级情感分析安全智能方法。

Q3 Engineering
S. Yadav, D. Tayal, S. Shivhare
{"title":"基于困惑贝叶斯分类器的方面级情感分析安全智能方法。","authors":"S. Yadav, D. Tayal, S. Shivhare","doi":"10.1504/IJAIP.2019.10007905","DOIUrl":null,"url":null,"abstract":"In this work, we are using machine learning methods to classify a review document. We are using two machine learning methods - Naive Bayes classifier and perplexed Bayes classifier. First we will briefly introduce the Naive Bayes classifier, its shortcomings and perplexed Bayes classifier. Further, we will be training the classifiers using a small training set and will use a test set with reviews having dependency among its features. We will then show that how Naive Bayes classifier fails to classify such reviews and will be showing that perplexed Bayes classifier can be used to classify the given test set, having dependency among its features.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perplexed Bayes Classifier based Secure & Intelligent Approach for Aspect Level Sentiment Analysis.\",\"authors\":\"S. Yadav, D. Tayal, S. Shivhare\",\"doi\":\"10.1504/IJAIP.2019.10007905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are using machine learning methods to classify a review document. We are using two machine learning methods - Naive Bayes classifier and perplexed Bayes classifier. First we will briefly introduce the Naive Bayes classifier, its shortcomings and perplexed Bayes classifier. Further, we will be training the classifiers using a small training set and will use a test set with reviews having dependency among its features. We will then show that how Naive Bayes classifier fails to classify such reviews and will be showing that perplexed Bayes classifier can be used to classify the given test set, having dependency among its features.\",\"PeriodicalId\":38797,\"journal\":{\"name\":\"International Journal of Advanced Intelligence Paradigms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Intelligence Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAIP.2019.10007905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAIP.2019.10007905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们使用机器学习方法对审查文档进行分类。我们使用了两种机器学习方法——朴素贝叶斯分类器和困惑贝叶斯分类器。首先,我们将简要介绍朴素贝叶斯分类器,它的缺点和困惑的贝叶斯分类器。此外,我们将使用一个小的训练集来训练分类器,并使用一个测试集,该测试集的特征之间具有相关性。然后,我们将展示Naive Bayes分类器如何未能对此类评论进行分类,并将展示困惑的Bayes分类器可以用于对给定的测试集进行分类,其特征之间具有相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perplexed Bayes Classifier based Secure & Intelligent Approach for Aspect Level Sentiment Analysis.
In this work, we are using machine learning methods to classify a review document. We are using two machine learning methods - Naive Bayes classifier and perplexed Bayes classifier. First we will briefly introduce the Naive Bayes classifier, its shortcomings and perplexed Bayes classifier. Further, we will be training the classifiers using a small training set and will use a test set with reviews having dependency among its features. We will then show that how Naive Bayes classifier fails to classify such reviews and will be showing that perplexed Bayes classifier can be used to classify the given test set, having dependency among its features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信