纯镁基搅拌摩擦表面复合材料的研制与参数优化

Q4 Materials Science
Balraj Singh, Jagdev Singh, R. Joshi
{"title":"纯镁基搅拌摩擦表面复合材料的研制与参数优化","authors":"Balraj Singh, Jagdev Singh, R. Joshi","doi":"10.4018/IJSEIMS.2021070105","DOIUrl":null,"url":null,"abstract":"Friction stir processing (FSP) is an emerging method for improving surface properties of materials by composite fabrication. This study aims at optimizing the major FSP parameters and analysis of their real-time influence on the mechanical performance of a surface composite fabricated with Magnesium (Mg) matrix and Titanium Carbide (TiC) as reinforcement. Effects of different process parameters, tool rotational speed, plunge depth, the linear speed of the tool, cooling condition, and number of FSP passes have been examined. Using L27 array, a total of 27 combinations of these process parameters were analyzed by taking microhardness as an output response to find influential parameters by Taguchi's technique. Maximum micro-hardness was achieved when tool rpm of 600, cooling temperature of -10o C, tool feed of 15 mm/min, plunge depth of 0.35 mm, and 3 passes of FSP tool were chosen with the help of Taguchi's method. Analysis of variance indicated that cooling temperature, the tool feed, and the number of passes of the FSP tool were the most significant parameters.","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Parametric Optimisation of Pure Magnesium Matrix Surface Composite by Friction Stir Processing\",\"authors\":\"Balraj Singh, Jagdev Singh, R. Joshi\",\"doi\":\"10.4018/IJSEIMS.2021070105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction stir processing (FSP) is an emerging method for improving surface properties of materials by composite fabrication. This study aims at optimizing the major FSP parameters and analysis of their real-time influence on the mechanical performance of a surface composite fabricated with Magnesium (Mg) matrix and Titanium Carbide (TiC) as reinforcement. Effects of different process parameters, tool rotational speed, plunge depth, the linear speed of the tool, cooling condition, and number of FSP passes have been examined. Using L27 array, a total of 27 combinations of these process parameters were analyzed by taking microhardness as an output response to find influential parameters by Taguchi's technique. Maximum micro-hardness was achieved when tool rpm of 600, cooling temperature of -10o C, tool feed of 15 mm/min, plunge depth of 0.35 mm, and 3 passes of FSP tool were chosen with the help of Taguchi's method. Analysis of variance indicated that cooling temperature, the tool feed, and the number of passes of the FSP tool were the most significant parameters.\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSEIMS.2021070105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSEIMS.2021070105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

搅拌摩擦加工(FSP)是一种新兴的提高复合材料表面性能的方法。本研究旨在优化主要FSP参数,并分析其对以镁(Mg)基体和碳化钛(TiC)为增强材料的表面复合材料力学性能的实时影响。考察了不同工艺参数、刀具转速、切削深度、刀具线速度、冷却条件和FSP道次对成形的影响。利用L27阵列,以显微硬度作为输出响应,通过田口技术对27种工艺参数组合进行分析,找出影响参数。在刀具转速为600、冷却温度为- 100℃、进给量为15 mm/min、入刀深度为0.35 mm、FSP刀具3道次时,采用田口法获得了最大显微硬度。方差分析表明,冷却温度、刀具进给和FSP刀具的道次数是最显著的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Parametric Optimisation of Pure Magnesium Matrix Surface Composite by Friction Stir Processing
Friction stir processing (FSP) is an emerging method for improving surface properties of materials by composite fabrication. This study aims at optimizing the major FSP parameters and analysis of their real-time influence on the mechanical performance of a surface composite fabricated with Magnesium (Mg) matrix and Titanium Carbide (TiC) as reinforcement. Effects of different process parameters, tool rotational speed, plunge depth, the linear speed of the tool, cooling condition, and number of FSP passes have been examined. Using L27 array, a total of 27 combinations of these process parameters were analyzed by taking microhardness as an output response to find influential parameters by Taguchi's technique. Maximum micro-hardness was achieved when tool rpm of 600, cooling temperature of -10o C, tool feed of 15 mm/min, plunge depth of 0.35 mm, and 3 passes of FSP tool were chosen with the help of Taguchi's method. Analysis of variance indicated that cooling temperature, the tool feed, and the number of passes of the FSP tool were the most significant parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信