具有恐惧效应的离散捕食-食饵系统动力学和密度依赖的食饵物种出生率

IF 0.4 Q4 MATHEMATICS, APPLIED
D. Mukherjee
{"title":"具有恐惧效应的离散捕食-食饵系统动力学和密度依赖的食饵物种出生率","authors":"D. Mukherjee","doi":"10.5206/mase/14496","DOIUrl":null,"url":null,"abstract":"This paper analyses a discrete predator-prey system with fear effect and density dependent birth rate of the prey species. The fixed points of the system are determined and their stability is examined. The criterion for Neimark-Sacker bifurcation and flip bifurcation is developed. The chaotic orbit at an unstable fixed point can be stabilized by applying the state feedback control method. Numerically, we illustrate our analytical findings and observe the complex behaviour of the system that leads to stable state to chaotic one.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of discrete predator- prey system with fear effect and density dependent birth rate of the prey species\",\"authors\":\"D. Mukherjee\",\"doi\":\"10.5206/mase/14496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses a discrete predator-prey system with fear effect and density dependent birth rate of the prey species. The fixed points of the system are determined and their stability is examined. The criterion for Neimark-Sacker bifurcation and flip bifurcation is developed. The chaotic orbit at an unstable fixed point can be stabilized by applying the state feedback control method. Numerically, we illustrate our analytical findings and observe the complex behaviour of the system that leads to stable state to chaotic one.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/14496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/14496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一个具有恐惧效应和密度依赖的离散捕食系统。确定了系统的不动点,并对其稳定性进行了检验。建立了Neimark-Sacker分岔和翻转分岔的判据。应用状态反馈控制方法可以稳定不稳定不动点的混沌轨道。从数字上讲,我们说明了我们的分析结果,并观察了系统的复杂行为,该行为导致稳定状态变为混沌状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of discrete predator- prey system with fear effect and density dependent birth rate of the prey species
This paper analyses a discrete predator-prey system with fear effect and density dependent birth rate of the prey species. The fixed points of the system are determined and their stability is examined. The criterion for Neimark-Sacker bifurcation and flip bifurcation is developed. The chaotic orbit at an unstable fixed point can be stabilized by applying the state feedback control method. Numerically, we illustrate our analytical findings and observe the complex behaviour of the system that leads to stable state to chaotic one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信