基于智能手机运动传感器数据语义分割的路况监测

Q1 Engineering
E. Mahmood, Nizar Zaghden, M. Mejdoub
{"title":"基于智能手机运动传感器数据语义分割的路况监测","authors":"E. Mahmood, Nizar Zaghden, M. Mejdoub","doi":"10.21533/pen.v11i3.3608","DOIUrl":null,"url":null,"abstract":"Many studies and publications have been written about the use of moving object analysis to locate a specific item or replace a lost object in video sequences. Using semantic analysis, it could be challenging to pinpoint each meaning and follow the movement of moving objects. Some machine learning algorithms have turned to the right interpretation of photos or video recordings to communicate coherently. The technique converts visual patterns and features into visual language using dense and sparse optical flow algorithms. To semantically partition smartphone motion sensor data for any video categorization, using integrated bidirectional Long Short-Term Memory layers, this paper proposes a redesigned U-Net architecture. Experiments show that the proposed technique outperforms several existing semantic segmentation algorithms using z-axis accelerometer and z-axis gyroscope properties. The video sequence's numerous moving elements are synchronised with one another to follow the scenario. Also, the objective of this work is to assess the proposed model on roadways and other moving objects using five datasets (self-made dataset and the pothole600 dataset). After looking at the map or tracking an object, the results should be given together with the diagnosis of the moving object and its synchronization with video clips. The suggested model's goals were developed using a machine learning method that combines the validity of the results with the precision of finding the necessary moving parts. Python 3.7 platforms were used to complete the project since they are user-friendly and highly efficient platforms.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Road conditions monitoring using semantic segmentation of smartphone motion sensor data\",\"authors\":\"E. Mahmood, Nizar Zaghden, M. Mejdoub\",\"doi\":\"10.21533/pen.v11i3.3608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies and publications have been written about the use of moving object analysis to locate a specific item or replace a lost object in video sequences. Using semantic analysis, it could be challenging to pinpoint each meaning and follow the movement of moving objects. Some machine learning algorithms have turned to the right interpretation of photos or video recordings to communicate coherently. The technique converts visual patterns and features into visual language using dense and sparse optical flow algorithms. To semantically partition smartphone motion sensor data for any video categorization, using integrated bidirectional Long Short-Term Memory layers, this paper proposes a redesigned U-Net architecture. Experiments show that the proposed technique outperforms several existing semantic segmentation algorithms using z-axis accelerometer and z-axis gyroscope properties. The video sequence's numerous moving elements are synchronised with one another to follow the scenario. Also, the objective of this work is to assess the proposed model on roadways and other moving objects using five datasets (self-made dataset and the pothole600 dataset). After looking at the map or tracking an object, the results should be given together with the diagnosis of the moving object and its synchronization with video clips. The suggested model's goals were developed using a machine learning method that combines the validity of the results with the precision of finding the necessary moving parts. Python 3.7 platforms were used to complete the project since they are user-friendly and highly efficient platforms.\",\"PeriodicalId\":37519,\"journal\":{\"name\":\"Periodicals of Engineering and Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicals of Engineering and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/pen.v11i3.3608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/pen.v11i3.3608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

许多研究和出版物都写了关于使用移动物体分析来定位特定物品或替换视频序列中丢失的物体。使用语义分析,精确定位每个含义并跟踪移动对象的运动可能具有挑战性。一些机器学习算法已经转向对照片或视频记录的正确解释,以便进行连贯的交流。该技术利用密集光流和稀疏光流算法将视觉模式和特征转换为视觉语言。为了对智能手机运动传感器数据进行语义划分,使用集成的双向长短期记忆层,本文提出了一种重新设计的U-Net架构。实验表明,基于z轴加速度计和z轴陀螺仪特性的语义分割算法优于现有的几种语义分割算法。视频序列的众多移动元素彼此同步,以跟随场景。此外,本工作的目的是使用五个数据集(自制数据集和pothole600数据集)在道路和其他移动物体上评估所提出的模型。在查看地图或跟踪对象后,应将结果与移动对象的诊断及其与视频剪辑的同步一起给出。建议的模型目标是使用机器学习方法开发的,该方法将结果的有效性与寻找必要运动部件的精度相结合。Python 3.7平台被用于完成该项目,因为它们是用户友好且高效的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road conditions monitoring using semantic segmentation of smartphone motion sensor data
Many studies and publications have been written about the use of moving object analysis to locate a specific item or replace a lost object in video sequences. Using semantic analysis, it could be challenging to pinpoint each meaning and follow the movement of moving objects. Some machine learning algorithms have turned to the right interpretation of photos or video recordings to communicate coherently. The technique converts visual patterns and features into visual language using dense and sparse optical flow algorithms. To semantically partition smartphone motion sensor data for any video categorization, using integrated bidirectional Long Short-Term Memory layers, this paper proposes a redesigned U-Net architecture. Experiments show that the proposed technique outperforms several existing semantic segmentation algorithms using z-axis accelerometer and z-axis gyroscope properties. The video sequence's numerous moving elements are synchronised with one another to follow the scenario. Also, the objective of this work is to assess the proposed model on roadways and other moving objects using five datasets (self-made dataset and the pothole600 dataset). After looking at the map or tracking an object, the results should be given together with the diagnosis of the moving object and its synchronization with video clips. The suggested model's goals were developed using a machine learning method that combines the validity of the results with the precision of finding the necessary moving parts. Python 3.7 platforms were used to complete the project since they are user-friendly and highly efficient platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
140
审稿时长
7 weeks
期刊介绍: *Industrial Engineering: 1 . Ergonomics 2 . Manufacturing 3 . TQM/quality engineering, reliability/maintenance engineering 4 . Production Planning 5 . Facility location, layout, design, materials handling 6 . Education, case studies 7 . Inventory, logistics, transportation, supply chain management 8 . Management 9 . Project/operations management, scheduling 10 . Information systems for production and management 11 . Innovation, knowledge management, organizational learning *Mechanical Engineering: 1 . Energy 2 . Machine Design 3 . Engineering Materials 4 . Manufacturing 5 . Mechatronics & Robotics 6 . Transportation 7 . Fluid Mechanics 8 . Optical Engineering 9 . Nanotechnology 10 . Maintenance & Safety *Computer Science: 1 . Computational Intelligence 2 . Computer Graphics 3 . Data Mining 4 . Human-Centered Computing 5 . Internet and Web Computing 6 . Mobile and Cloud computing 7 . Software Engineering 8 . Online Social Networks *Electrical and electronics engineering 1 . Sensor, automation and instrumentation technology 2 . Telecommunications 3 . Power systems 4 . Electronics 5 . Nanotechnology *Architecture: 1 . Advanced digital applications in architecture practice and computation within Generative processes of design 2 . Computer science, biology and ecology connected with structural engineering 3 . Technology and sustainability in architecture *Bioengineering: 1 . Medical Sciences 2 . Biological and Biomedical Sciences 3 . Agriculture and Life Sciences 4 . Biology and neuroscience 5 . Biological Sciences (Botany, Forestry, Cell Biology, Marine Biology, Zoology) [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信