{"title":"两进制的质数","authors":"M. Drmota, C. Mauduit, J. Rivat","doi":"10.1215/00127094-2019-0083","DOIUrl":null,"url":null,"abstract":"If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":"169 1","pages":"1809-1876"},"PeriodicalIF":2.3000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Prime numbers in two bases\",\"authors\":\"M. Drmota, C. Mauduit, J. Rivat\",\"doi\":\"10.1215/00127094-2019-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\"169 1\",\"pages\":\"1809-1876\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2019-0083\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2019-0083","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
If q1 and q2 are two coprime bases, f (resp. g) a strongly q1-multiplicative (resp. strongly q2-multiplicative) function of modulus 1 and θ a real number, we estimate the sums ∑ n≤x Λ(n)f(n)g(n) exp(2iπθn) (and ∑ n≤x μ(n)f(n)g(n) exp(2iπθn)), where Λ denotes the von Mangoldt function (and μ the Möbius function). The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation and combinatorial arguments. We deduce from these estimates a Prime Number Theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.