Re = 1000时NACA0012翼型三维尾迹转捩的直接数值模拟

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
T. Kouser, Y. Xiong, Dan Yang, Sai Peng
{"title":"Re = 1000时NACA0012翼型三维尾迹转捩的直接数值模拟","authors":"T. Kouser, Y. Xiong, Dan Yang, Sai Peng","doi":"10.1177/17568293211055656","DOIUrl":null,"url":null,"abstract":"For micro air vehicles (MAV), the precise prediction of aerodynamic force plays an important role. The aerodynamic force of a comparative low Reynold number (Re) vehicle tends to be affected by the different flow modes. In this paper, the aerodynamic performance of a three-dimensional NACA0012 airfoil is studied numerically. A range of angles of attack (α) 0°−25° and Reynolds number 1000 is considered. Mean and fluctuating coefficients of aerodynamic forces around NACA0012 airfoil are analyzed for different wake modes. The difference of aerodynamic forces between two and three-dimensional simulations are compared. The results show that the wake remains steady two-dimensional for lower angles of attack. At α = 9°, Von Karman vortex pattern is noticed. Flow transition to three-dimensional as the angle of attack increases from α = 13°. 3D wake is found to be stable with parallel shedding mode for 14°-17°. However, these modes become finer with the gradual increase in angle of incidence. While, wake loses its three-dimensional stability to chaotic with gradual increment in angle of attack afterwards.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Direct Numerical Simulations on the three-dimensional wake transition of flows over NACA0012 airfoil at Re = 1000\",\"authors\":\"T. Kouser, Y. Xiong, Dan Yang, Sai Peng\",\"doi\":\"10.1177/17568293211055656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For micro air vehicles (MAV), the precise prediction of aerodynamic force plays an important role. The aerodynamic force of a comparative low Reynold number (Re) vehicle tends to be affected by the different flow modes. In this paper, the aerodynamic performance of a three-dimensional NACA0012 airfoil is studied numerically. A range of angles of attack (α) 0°−25° and Reynolds number 1000 is considered. Mean and fluctuating coefficients of aerodynamic forces around NACA0012 airfoil are analyzed for different wake modes. The difference of aerodynamic forces between two and three-dimensional simulations are compared. The results show that the wake remains steady two-dimensional for lower angles of attack. At α = 9°, Von Karman vortex pattern is noticed. Flow transition to three-dimensional as the angle of attack increases from α = 13°. 3D wake is found to be stable with parallel shedding mode for 14°-17°. However, these modes become finer with the gradual increase in angle of incidence. While, wake loses its three-dimensional stability to chaotic with gradual increment in angle of attack afterwards.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293211055656\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211055656","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

对于微型飞行器(MAV)来说,精确的气动力预测具有重要的意义。相对低雷诺数飞行器的气动力往往受到不同流动模式的影响。本文对三维NACA0012翼型的气动性能进行了数值研究。考虑攻角(α)为0°~ 25°,雷诺数为1000。分析了不同尾流模式下NACA0012翼型的平均气动系数和波动气动系数。比较了二维仿真和三维仿真的气动力差异。结果表明,在较低迎角时,尾迹保持二维稳定。在α = 9°处,观察到Von Karman涡型。从α = 13°开始,随着迎角的增大,流动向三维过渡。三维尾迹在14°~ 17°范围内具有稳定的平行脱落模式。随着入射角的逐渐增大,这些模态逐渐变细。随着迎角的逐渐增大,尾迹逐渐失去三维稳定性,进入混沌状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Numerical Simulations on the three-dimensional wake transition of flows over NACA0012 airfoil at Re = 1000
For micro air vehicles (MAV), the precise prediction of aerodynamic force plays an important role. The aerodynamic force of a comparative low Reynold number (Re) vehicle tends to be affected by the different flow modes. In this paper, the aerodynamic performance of a three-dimensional NACA0012 airfoil is studied numerically. A range of angles of attack (α) 0°−25° and Reynolds number 1000 is considered. Mean and fluctuating coefficients of aerodynamic forces around NACA0012 airfoil are analyzed for different wake modes. The difference of aerodynamic forces between two and three-dimensional simulations are compared. The results show that the wake remains steady two-dimensional for lower angles of attack. At α = 9°, Von Karman vortex pattern is noticed. Flow transition to three-dimensional as the angle of attack increases from α = 13°. 3D wake is found to be stable with parallel shedding mode for 14°-17°. However, these modes become finer with the gradual increase in angle of incidence. While, wake loses its three-dimensional stability to chaotic with gradual increment in angle of attack afterwards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信