{"title":"理想正则图的中心顶点和半径","authors":"F. Shaveisi","doi":"10.22108/TOC.2017.21472","DOIUrl":null,"url":null,"abstract":"The regular graph of ideals of the commutative ring $R$, denoted by ${Gamma_{reg}}(R)$, is a graph whose vertex set is the set of all non-trivial ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if either $I$ contains a $J$-regular element or $J$ contains an $I$-regular element. In this paper, it is proved that the radius of $Gamma_{reg}(R)$ equals $3$. The central vertices of $Gamma_{reg}(R)$ are determined, too.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"1-13"},"PeriodicalIF":0.6000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The central vertices and radius of the regular graph of ideals\",\"authors\":\"F. Shaveisi\",\"doi\":\"10.22108/TOC.2017.21472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The regular graph of ideals of the commutative ring $R$, denoted by ${Gamma_{reg}}(R)$, is a graph whose vertex set is the set of all non-trivial ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if either $I$ contains a $J$-regular element or $J$ contains an $I$-regular element. In this paper, it is proved that the radius of $Gamma_{reg}(R)$ equals $3$. The central vertices of $Gamma_{reg}(R)$ are determined, too.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"6 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2017.21472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The central vertices and radius of the regular graph of ideals
The regular graph of ideals of the commutative ring $R$, denoted by ${Gamma_{reg}}(R)$, is a graph whose vertex set is the set of all non-trivial ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if either $I$ contains a $J$-regular element or $J$ contains an $I$-regular element. In this paper, it is proved that the radius of $Gamma_{reg}(R)$ equals $3$. The central vertices of $Gamma_{reg}(R)$ are determined, too.