稳定马赫数4边界层流动的声学超表面宽带设计

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL
R. Zhao, Xiao Liu, C. Wen, Xiaoyong Wang
{"title":"稳定马赫数4边界层流动的声学超表面宽带设计","authors":"R. Zhao, Xiao Liu, C. Wen, Xiaoyong Wang","doi":"10.21203/rs.3.rs-1140242/v1","DOIUrl":null,"url":null,"abstract":"A piecewise acoustic metasurface is designed to suppress the first mode while marginally amplifying the Mack second mode in a Mach 4 flat-plate boundary layer (BL) flow. The results of linear stability theory (LST) and the e N method demonstrate the stabilization effect and transition delay performance, respectively. However, the direct numerical simulation (DNS) results indicate that the designed broadband acoustic metasurface actually weakly excites the first mode with a slightly larger fluctuating pressure amplitude at the surface, which is in contrast to the analysis of LST. The discrepancies are found to lie in the ‘roughness’ effect caused by the recirculation zones inside the microslits and the alternating expansion and compression waves induced at the slit edges, which significantly amplifies the first mode. For further clarification of the competitive mechanism between the acoustic stabilization and ‘roughness’ destabilization effects of metasurfaces on the first mode, a carefully designed metasurface is installed at the maximum growth rate region, which excites the first mode on the metasurface but inhibits its development downstream.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":" ","pages":"1-18"},"PeriodicalIF":2.9000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Broadband design of acoustic metasurfaces for the stabilization of a Mach 4 boundary layer flow\",\"authors\":\"R. Zhao, Xiao Liu, C. Wen, Xiaoyong Wang\",\"doi\":\"10.21203/rs.3.rs-1140242/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A piecewise acoustic metasurface is designed to suppress the first mode while marginally amplifying the Mack second mode in a Mach 4 flat-plate boundary layer (BL) flow. The results of linear stability theory (LST) and the e N method demonstrate the stabilization effect and transition delay performance, respectively. However, the direct numerical simulation (DNS) results indicate that the designed broadband acoustic metasurface actually weakly excites the first mode with a slightly larger fluctuating pressure amplitude at the surface, which is in contrast to the analysis of LST. The discrepancies are found to lie in the ‘roughness’ effect caused by the recirculation zones inside the microslits and the alternating expansion and compression waves induced at the slit edges, which significantly amplifies the first mode. For further clarification of the competitive mechanism between the acoustic stabilization and ‘roughness’ destabilization effects of metasurfaces on the first mode, a carefully designed metasurface is installed at the maximum growth rate region, which excites the first mode on the metasurface but inhibits its development downstream.\",\"PeriodicalId\":33737,\"journal\":{\"name\":\"Advances in Aerodynamics\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1140242/v1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1140242/v1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

在马赫数为4的平板边界层(BL)流中,分段声学元表面被设计为抑制第一模式,同时略微放大Mack第二模式。线性稳定理论(LST)和eN方法的结果分别证明了稳定效果和过渡延迟性能。然而,直接数值模拟(DNS)结果表明,设计的宽带声学超表面实际上微弱地激发了第一模式,表面的脉动压力振幅略大,这与LST的分析形成了对比。发现差异在于微缝内部的再循环区引起的“粗糙度”效应,以及在缝边缘引起的交替膨胀和压缩波,这显著放大了第一模式。为了进一步阐明元表面对第一模式的声学稳定和“粗糙度”不稳定效应之间的竞争机制,在最大生长速率区域安装了一个精心设计的元表面,这激发了元表面上的第一模式,但抑制了其向下游的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadband design of acoustic metasurfaces for the stabilization of a Mach 4 boundary layer flow
A piecewise acoustic metasurface is designed to suppress the first mode while marginally amplifying the Mack second mode in a Mach 4 flat-plate boundary layer (BL) flow. The results of linear stability theory (LST) and the e N method demonstrate the stabilization effect and transition delay performance, respectively. However, the direct numerical simulation (DNS) results indicate that the designed broadband acoustic metasurface actually weakly excites the first mode with a slightly larger fluctuating pressure amplitude at the surface, which is in contrast to the analysis of LST. The discrepancies are found to lie in the ‘roughness’ effect caused by the recirculation zones inside the microslits and the alternating expansion and compression waves induced at the slit edges, which significantly amplifies the first mode. For further clarification of the competitive mechanism between the acoustic stabilization and ‘roughness’ destabilization effects of metasurfaces on the first mode, a carefully designed metasurface is installed at the maximum growth rate region, which excites the first mode on the metasurface but inhibits its development downstream.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信