Yaozhi ZHOU , Zun CAI , Qinglian LI , Chenyang LI , Mingbo SUN , Shaotian GONG
{"title":"液体射流在发散腔燃烧室中的穿透和分布特性","authors":"Yaozhi ZHOU , Zun CAI , Qinglian LI , Chenyang LI , Mingbo SUN , Shaotian GONG","doi":"10.1016/j.cja.2023.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>The atomization process of a liquid jet in a divergent cavity-based combustor was investigated experimentally using high-speed photography and schlieren techniques under a Mach number 2.0 supersonic crossflow. Gas-liquid flow field was studied at different divergent angles and injection schemes. It is found that complex wave structures exist in the divergent cavity-based combustor. The spray field can be divided into three distinct zones: surface wave-dominated breakup zone, rapid atomization zone and cavity mixing zone. A dimensionless spray factor is defined to describe the concentration of spray inside the cavity qualitatively. As a result, it is revealed that for the large divergent angle cavity, the injection scheme near the upstream inlet has a higher penetration depth but a lower spray distribution, where the injection scheme near the cavity has a more spray distribution. For the small divergent angle cavity, the injection scheme near the upstream inlet also has a higher penetration depth and the injection scheme near the start point of the divergent section has a more sufficient spray distribution. The small divergent angle cavity-based combustor with the upstream wall transverse injection is an optimized injection scheme to improve both penetration and spray distribution inside the cavity. Finally, a penetration depth formula is proposed to explain the spray and distribution behaviors in the divergent cavity-based combustor.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"36 12","pages":"Pages 139-150"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123000626/pdfft?md5=7ef01c8b6f5b2c9b9fd9e0bac950f9c8&pid=1-s2.0-S1000936123000626-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Characteristics of penetration and distribution of a liquid jet in a divergent cavity-based combustor\",\"authors\":\"Yaozhi ZHOU , Zun CAI , Qinglian LI , Chenyang LI , Mingbo SUN , Shaotian GONG\",\"doi\":\"10.1016/j.cja.2023.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The atomization process of a liquid jet in a divergent cavity-based combustor was investigated experimentally using high-speed photography and schlieren techniques under a Mach number 2.0 supersonic crossflow. Gas-liquid flow field was studied at different divergent angles and injection schemes. It is found that complex wave structures exist in the divergent cavity-based combustor. The spray field can be divided into three distinct zones: surface wave-dominated breakup zone, rapid atomization zone and cavity mixing zone. A dimensionless spray factor is defined to describe the concentration of spray inside the cavity qualitatively. As a result, it is revealed that for the large divergent angle cavity, the injection scheme near the upstream inlet has a higher penetration depth but a lower spray distribution, where the injection scheme near the cavity has a more spray distribution. For the small divergent angle cavity, the injection scheme near the upstream inlet also has a higher penetration depth and the injection scheme near the start point of the divergent section has a more sufficient spray distribution. The small divergent angle cavity-based combustor with the upstream wall transverse injection is an optimized injection scheme to improve both penetration and spray distribution inside the cavity. Finally, a penetration depth formula is proposed to explain the spray and distribution behaviors in the divergent cavity-based combustor.</p></div>\",\"PeriodicalId\":55631,\"journal\":{\"name\":\"Chinese Journal of Aeronautics\",\"volume\":\"36 12\",\"pages\":\"Pages 139-150\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1000936123000626/pdfft?md5=7ef01c8b6f5b2c9b9fd9e0bac950f9c8&pid=1-s2.0-S1000936123000626-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Aeronautics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000936123000626\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123000626","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Characteristics of penetration and distribution of a liquid jet in a divergent cavity-based combustor
The atomization process of a liquid jet in a divergent cavity-based combustor was investigated experimentally using high-speed photography and schlieren techniques under a Mach number 2.0 supersonic crossflow. Gas-liquid flow field was studied at different divergent angles and injection schemes. It is found that complex wave structures exist in the divergent cavity-based combustor. The spray field can be divided into three distinct zones: surface wave-dominated breakup zone, rapid atomization zone and cavity mixing zone. A dimensionless spray factor is defined to describe the concentration of spray inside the cavity qualitatively. As a result, it is revealed that for the large divergent angle cavity, the injection scheme near the upstream inlet has a higher penetration depth but a lower spray distribution, where the injection scheme near the cavity has a more spray distribution. For the small divergent angle cavity, the injection scheme near the upstream inlet also has a higher penetration depth and the injection scheme near the start point of the divergent section has a more sufficient spray distribution. The small divergent angle cavity-based combustor with the upstream wall transverse injection is an optimized injection scheme to improve both penetration and spray distribution inside the cavity. Finally, a penetration depth formula is proposed to explain the spray and distribution behaviors in the divergent cavity-based combustor.
期刊介绍:
Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.