关于全纯映射的逐点Lyapunov指数

Pub Date : 2020-08-22 DOI:10.4064/fm847-1-2020
I. Weinstein
{"title":"关于全纯映射的逐点Lyapunov指数","authors":"I. Weinstein","doi":"10.4064/fm847-1-2020","DOIUrl":null,"url":null,"abstract":"We prove that for any holomorphic map, and any bounded orbit which does not accumulate to a singular set or to an attracting cycle, its lower Lyapunov exponent is non-negative. The same result holds for unbounded orbits, for maps with a bounded singular set. Furthermore, the orbit may accumulate to infinity or to a singular set, as long as it is slow enough.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the pointwise Lyapunov exponent of holomorphic maps\",\"authors\":\"I. Weinstein\",\"doi\":\"10.4064/fm847-1-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for any holomorphic map, and any bounded orbit which does not accumulate to a singular set or to an attracting cycle, its lower Lyapunov exponent is non-negative. The same result holds for unbounded orbits, for maps with a bounded singular set. Furthermore, the orbit may accumulate to infinity or to a singular set, as long as it is slow enough.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm847-1-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm847-1-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了对于任何全纯映射和任何不累积到奇异集或吸引环的有界轨道,其下Lyapunov指数是非负的。同样的结果适用于无界轨道,适用于有界奇异集的映射。此外,只要轨道足够慢,它可以累积到无穷大或一个奇异集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the pointwise Lyapunov exponent of holomorphic maps
We prove that for any holomorphic map, and any bounded orbit which does not accumulate to a singular set or to an attracting cycle, its lower Lyapunov exponent is non-negative. The same result holds for unbounded orbits, for maps with a bounded singular set. Furthermore, the orbit may accumulate to infinity or to a singular set, as long as it is slow enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信