死亡率和寿命风险的资本需求评估的随机模型,侧重于特质和趋势成分

IF 1.5 Q3 BUSINESS, FINANCE
G. P. Clemente, Francesco Della Corte, N. Savelli
{"title":"死亡率和寿命风险的资本需求评估的随机模型,侧重于特质和趋势成分","authors":"G. P. Clemente, Francesco Della Corte, N. Savelli","doi":"10.1017/S174849952200015X","DOIUrl":null,"url":null,"abstract":"Abstract This paper provides a stochastic model, consistent with Solvency II and the Delegated Regulation, to quantify the capital requirement for demographic risk. In particular, we present a framework that models idiosyncratic and trend risks exploiting a risk theory approach in which results are obtained analytically. We apply the model to non-participating policies and quantify the Solvency Capital Requirement for the aforementioned risks in different time horizons.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"16 1","pages":"527 - 546"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A stochastic model for capital requirement assessment for mortality and longevity risk, focusing on idiosyncratic and trend components\",\"authors\":\"G. P. Clemente, Francesco Della Corte, N. Savelli\",\"doi\":\"10.1017/S174849952200015X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper provides a stochastic model, consistent with Solvency II and the Delegated Regulation, to quantify the capital requirement for demographic risk. In particular, we present a framework that models idiosyncratic and trend risks exploiting a risk theory approach in which results are obtained analytically. We apply the model to non-participating policies and quantify the Solvency Capital Requirement for the aforementioned risks in different time horizons.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":\"16 1\",\"pages\":\"527 - 546\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S174849952200015X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S174849952200015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文提出了一个符合偿付能力II和委托监管的随机模型来量化人口风险的资本要求。特别地,我们提出了一个框架,利用风险理论方法对特质和趋势风险进行建模,其中结果是分析获得的。我们将该模型应用于非参与保单,并在不同的时间范围内量化上述风险的偿付能力资本要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic model for capital requirement assessment for mortality and longevity risk, focusing on idiosyncratic and trend components
Abstract This paper provides a stochastic model, consistent with Solvency II and the Delegated Regulation, to quantify the capital requirement for demographic risk. In particular, we present a framework that models idiosyncratic and trend risks exploiting a risk theory approach in which results are obtained analytically. We apply the model to non-participating policies and quantify the Solvency Capital Requirement for the aforementioned risks in different time horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信