一种共晶高熵合金凝固过程相场研究

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
B. Sagar, K. Biswas, R. Mukherjee
{"title":"一种共晶高熵合金凝固过程相场研究","authors":"B. Sagar, K. Biswas, R. Mukherjee","doi":"10.1080/09500839.2021.1877366","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present work, we adopt a computational approach to study the evolution of microstructure during solidification of a Ti-Fe-Co-Ni-Cu multi-component alloy system by regarding it as a Ti-(Cu, Ni)-(Fe, Co) pseudo-ternary-alloy system. The as-cast alloy has a eutectic morphology with lamellar structure between (Cu)SS and a Laves phase. A Kim-Kim-Suzuki (KKS) phase-field model for eutectic solidification is implemented for this multi-component alloy system using a MOOSE finite element framework. The model is implemented for different scenarios, which include the simulation of microstructures at eutectic temperature and for small degrees of undercoolings (ΔT = 2°C, 5°C, 8°C, 10°C). Analysis of the microstructure evolution reveals that an increase in undercooling leads to a higher growth velocity and a larger volume fraction of solid phases. GRAPHICAL ABSTRACT","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"160 - 172"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1877366","citationCount":"2","resultStr":"{\"title\":\"A phase-field study on a eutectic high-entropy alloy during solidification\",\"authors\":\"B. Sagar, K. Biswas, R. Mukherjee\",\"doi\":\"10.1080/09500839.2021.1877366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present work, we adopt a computational approach to study the evolution of microstructure during solidification of a Ti-Fe-Co-Ni-Cu multi-component alloy system by regarding it as a Ti-(Cu, Ni)-(Fe, Co) pseudo-ternary-alloy system. The as-cast alloy has a eutectic morphology with lamellar structure between (Cu)SS and a Laves phase. A Kim-Kim-Suzuki (KKS) phase-field model for eutectic solidification is implemented for this multi-component alloy system using a MOOSE finite element framework. The model is implemented for different scenarios, which include the simulation of microstructures at eutectic temperature and for small degrees of undercoolings (ΔT = 2°C, 5°C, 8°C, 10°C). Analysis of the microstructure evolution reveals that an increase in undercooling leads to a higher growth velocity and a larger volume fraction of solid phases. GRAPHICAL ABSTRACT\",\"PeriodicalId\":19860,\"journal\":{\"name\":\"Philosophical Magazine Letters\",\"volume\":\"101 1\",\"pages\":\"160 - 172\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09500839.2021.1877366\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09500839.2021.1877366\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1877366","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本文采用计算方法,将Ti-(Cu, Ni)-(Fe, Co)伪三元合金体系视为Ti-(Cu, Ni)-(Fe, Co)伪三元合金体系,研究了Ti-Fe- Fe- Cu多组分合金体系凝固过程中的微观组织演变。铸态合金具有介于(Cu)SS和Laves相之间的层状共晶形貌。采用MOOSE有限元框架,建立了多组分合金体系共晶凝固的Kim-Kim-Suzuki相场模型。该模型适用于不同的场景,包括模拟共晶温度下的微观组织和小程度的过冷(ΔT = 2°C, 5°C, 8°C, 10°C)。微观组织演化分析表明,过冷度的增加导致固相的体积分数和生长速度增大。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A phase-field study on a eutectic high-entropy alloy during solidification
ABSTRACT In the present work, we adopt a computational approach to study the evolution of microstructure during solidification of a Ti-Fe-Co-Ni-Cu multi-component alloy system by regarding it as a Ti-(Cu, Ni)-(Fe, Co) pseudo-ternary-alloy system. The as-cast alloy has a eutectic morphology with lamellar structure between (Cu)SS and a Laves phase. A Kim-Kim-Suzuki (KKS) phase-field model for eutectic solidification is implemented for this multi-component alloy system using a MOOSE finite element framework. The model is implemented for different scenarios, which include the simulation of microstructures at eutectic temperature and for small degrees of undercoolings (ΔT = 2°C, 5°C, 8°C, 10°C). Analysis of the microstructure evolution reveals that an increase in undercooling leads to a higher growth velocity and a larger volume fraction of solid phases. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine Letters
Philosophical Magazine Letters 物理-物理:凝聚态物理
CiteScore
2.60
自引率
0.00%
发文量
25
审稿时长
2.7 months
期刊介绍: Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate. Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信