基于框架理论的\(C^*\) -代数中的厚元与厚态

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D. V. Fufaev
{"title":"基于框架理论的\\(C^*\\) -代数中的厚元与厚态","authors":"D. V. Fufaev","doi":"10.1134/S106192082302005X","DOIUrl":null,"url":null,"abstract":"<p> We study some classes of noncommutative <span>\\(C^*\\)</span>-algebras and generalize some results which were originally obtained for commutative algebras in topological terms. In particular, we are interested in results obtained for topological spaces with properties close to separability and <span>\\( \\sigma \\)</span>-compactness. To obtain the algebraic, noncommutative versions of corresponding properties, we define and use the notions of thick elements and states. In particular, an element is thick if the only element orthogonal to it is zero. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thick Elements and States in \\\\(C^*\\\\)-Algebras in View of Frame Theory\",\"authors\":\"D. V. Fufaev\",\"doi\":\"10.1134/S106192082302005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study some classes of noncommutative <span>\\\\(C^*\\\\)</span>-algebras and generalize some results which were originally obtained for commutative algebras in topological terms. In particular, we are interested in results obtained for topological spaces with properties close to separability and <span>\\\\( \\\\sigma \\\\)</span>-compactness. To obtain the algebraic, noncommutative versions of corresponding properties, we define and use the notions of thick elements and states. In particular, an element is thick if the only element orthogonal to it is zero. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082302005X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082302005X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了若干类非交换\(C^*\) -代数,并在拓扑学上推广了原来关于交换代数的一些结果。特别地,我们对具有接近可分性和\( \sigma \) -紧性的拓扑空间的结果感兴趣。为了得到相应性质的代数非交换版本,我们定义并使用了厚元素和状态的概念。特别地,如果一个元素与它正交的唯一元素为零,它就是厚元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thick Elements and States in \(C^*\)-Algebras in View of Frame Theory

We study some classes of noncommutative \(C^*\)-algebras and generalize some results which were originally obtained for commutative algebras in topological terms. In particular, we are interested in results obtained for topological spaces with properties close to separability and \( \sigma \)-compactness. To obtain the algebraic, noncommutative versions of corresponding properties, we define and use the notions of thick elements and states. In particular, an element is thick if the only element orthogonal to it is zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信