SR分解的精细严格扰动界

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Mahvish Samar, Aamir Farooq
{"title":"SR分解的精细严格扰动界","authors":"Mahvish Samar,&nbsp;Aamir Farooq","doi":"10.1007/s11766-021-4086-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, some new rigorous perturbation bounds for the SR decomposition under normwise or componentwise perturbations for a given matrix are derived. Also, the explicit expressions for the mixed and componentwise condition numbers are presented by utilizing the block matrix-vector equation approach. Hypothetical and trial results demonstrate that these new bounds are constantly more tightly than the comparing ones in the literature.</p></div>","PeriodicalId":67336,"journal":{"name":"Applied Mathematics-a Journal Of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11766-021-4086-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Refined rigorous perturbation bounds for the SR decomposition\",\"authors\":\"Mahvish Samar,&nbsp;Aamir Farooq\",\"doi\":\"10.1007/s11766-021-4086-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, some new rigorous perturbation bounds for the SR decomposition under normwise or componentwise perturbations for a given matrix are derived. Also, the explicit expressions for the mixed and componentwise condition numbers are presented by utilizing the block matrix-vector equation approach. Hypothetical and trial results demonstrate that these new bounds are constantly more tightly than the comparing ones in the literature.</p></div>\",\"PeriodicalId\":67336,\"journal\":{\"name\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11766-021-4086-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-a Journal Of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-021-4086-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-a Journal Of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-021-4086-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文导出了给定矩阵在正态摄动或分量摄动下SR分解的一些新的严格摄动界。同时,利用分块矩阵-向量方程方法给出了混合条件数和分块条件数的显式表达式。假设和试验结果表明,这些新的边界总是比文献中比较的边界更紧密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined rigorous perturbation bounds for the SR decomposition

In this article, some new rigorous perturbation bounds for the SR decomposition under normwise or componentwise perturbations for a given matrix are derived. Also, the explicit expressions for the mixed and componentwise condition numbers are presented by utilizing the block matrix-vector equation approach. Hypothetical and trial results demonstrate that these new bounds are constantly more tightly than the comparing ones in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
10.00%
发文量
453
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信