{"title":"大型复合室剂量反应的中子能量依赖性计算","authors":"K. Tymińska, M. Gryziński, M. Maciak","doi":"10.2478/nuka-2019-0015","DOIUrl":null,"url":null,"abstract":"Abstract A model of REM-2-type chamber was modeled with MCNPX code to study the dose-response to monoenergetic neutrons in wide energy range from thermal to 20 MeV for various compositions of gas in the chamber. The energy dependence of the total dose absorbed in the filling gas was compared with the energy dependence of ambient absorbed dose D*(10) and with experimental data. The results of the studies will be useful for designing new, improved generation of recombination chambers.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"64 1","pages":"117 - 121"},"PeriodicalIF":0.7000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculated neutron energy dependence of the dose-response of large recombination chamber\",\"authors\":\"K. Tymińska, M. Gryziński, M. Maciak\",\"doi\":\"10.2478/nuka-2019-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A model of REM-2-type chamber was modeled with MCNPX code to study the dose-response to monoenergetic neutrons in wide energy range from thermal to 20 MeV for various compositions of gas in the chamber. The energy dependence of the total dose absorbed in the filling gas was compared with the energy dependence of ambient absorbed dose D*(10) and with experimental data. The results of the studies will be useful for designing new, improved generation of recombination chambers.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"64 1\",\"pages\":\"117 - 121\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2019-0015\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2019-0015","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Calculated neutron energy dependence of the dose-response of large recombination chamber
Abstract A model of REM-2-type chamber was modeled with MCNPX code to study the dose-response to monoenergetic neutrons in wide energy range from thermal to 20 MeV for various compositions of gas in the chamber. The energy dependence of the total dose absorbed in the filling gas was compared with the energy dependence of ambient absorbed dose D*(10) and with experimental data. The results of the studies will be useful for designing new, improved generation of recombination chambers.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.