{"title":"来自$\\mathbb{P}^2}中六条线的配置和镜像对称I的K3曲面","authors":"S. Hosono, B. Lian, Hiromichi Takagi, S. Yau","doi":"10.4310/cntp.2020.v14.n4.a2","DOIUrl":null,"url":null,"abstract":"From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3,6)$ for a family of K3 surfaces. We construct a good resolution of the Baily-Borel-Satake compactification of its parameter space, which admits special boundary points (LCSLs) given by normal crossing divisors. We find local isomorphisms between the $E(3,6)$ systems and the associated GKZ systems defined locally on the parameter space and cover the entire parameter space. Parallel structures are conjectured in general for hypergeometric system $E(n,m)$ on Grassmannians. Local solutions and mirror symmetry will be described in a companion paper \\cite{HLTYpartII}, where we introduce a K3 analogue of the elliptic lambda function in terms of genus two theta functions.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"K3 surfaces from configurations of six lines in $\\\\mathbb{P}^2$ and mirror symmetry I\",\"authors\":\"S. Hosono, B. Lian, Hiromichi Takagi, S. Yau\",\"doi\":\"10.4310/cntp.2020.v14.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3,6)$ for a family of K3 surfaces. We construct a good resolution of the Baily-Borel-Satake compactification of its parameter space, which admits special boundary points (LCSLs) given by normal crossing divisors. We find local isomorphisms between the $E(3,6)$ systems and the associated GKZ systems defined locally on the parameter space and cover the entire parameter space. Parallel structures are conjectured in general for hypergeometric system $E(n,m)$ on Grassmannians. Local solutions and mirror symmetry will be described in a companion paper \\\\cite{HLTYpartII}, where we introduce a K3 analogue of the elliptic lambda function in terms of genus two theta functions.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2020.v14.n4.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2020.v14.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
K3 surfaces from configurations of six lines in $\mathbb{P}^2$ and mirror symmetry I
From the viewpoint of mirror symmetry, we revisit the hypergeometric system $E(3,6)$ for a family of K3 surfaces. We construct a good resolution of the Baily-Borel-Satake compactification of its parameter space, which admits special boundary points (LCSLs) given by normal crossing divisors. We find local isomorphisms between the $E(3,6)$ systems and the associated GKZ systems defined locally on the parameter space and cover the entire parameter space. Parallel structures are conjectured in general for hypergeometric system $E(n,m)$ on Grassmannians. Local solutions and mirror symmetry will be described in a companion paper \cite{HLTYpartII}, where we introduce a K3 analogue of the elliptic lambda function in terms of genus two theta functions.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.