M. A. Holgerson, Martha Barnard, Byung-Gu Ahn, M. Hayes, A. Strecker
{"title":"淡水泛滥平原栖息地缓冲本地食物网免受非本地中脊蛙和牛蛙的负面影响","authors":"M. A. Holgerson, Martha Barnard, Byung-Gu Ahn, M. Hayes, A. Strecker","doi":"10.1086/720137","DOIUrl":null,"url":null,"abstract":"Species introductions are common in freshwater environments and have the potential to transform community and ecosystem structure. Predatory centrarchid fishes and American Bullfrogs (Lithobates catesbeianus Shaw, 1802 previously Rana catesbeiana) are both widespread aquatic invaders implicated in native amphibian declines. In lowland ecosystems, co-occurrence between native and nonnative amphibian and fish taxa is common; however, the mechanisms that facilitate their co-occurrence are poorly studied. Stable isotope analysis offers a tool to examine trophic interactions among native and nonnative taxa, including predation, competition, and shifting food resource availability, which may provide mechanistic insight into the drivers of co-occurrence. In this study, we used stable isotopes (δ13C and δ15N) to determine how the trophic structure of native fishes and amphibians differs between waterbodies with and without nonnative centrarchid fishes and bullfrogs across a floodplain in southwestern Washington, USA. We hypothesized that native species alter their feeding strategies to reduce niche overlap with nonnative taxa. In the presence of nonnative taxa, Three-spine Stickleback (Gasterosteus aculeatus Linnaeus, 1758), all native larval salamander species (Ambystoma gracile Baird, 1859 and Ambystoma macrodactylum Baird, 1850), and 1 of 2 native larval frog species (Rana aurora Baird and Girard, 1852) exhibited shifts in food resources or trophic position. Despite trophic differences, only 1 species (A. macrodactylum) had a smaller niche size in the presence of nonnatives. The observed trophic shifts reflect changes in habitat or food resources, which may reduce competition or predation and promote co-occurrence between nonnative and native taxa. Our results suggest that the co-occurrence of native and nonnative amphibians and fishes in lowland floodplain habitats may be facilitated by a broad range of food resources and complex habitat structure.","PeriodicalId":48926,"journal":{"name":"Freshwater Science","volume":"41 1","pages":"327 - 341"},"PeriodicalIF":1.7000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Freshwater floodplain habitats buffer native food webs from negative effects of nonnative centrarchids and bullfrogs\",\"authors\":\"M. A. Holgerson, Martha Barnard, Byung-Gu Ahn, M. Hayes, A. Strecker\",\"doi\":\"10.1086/720137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Species introductions are common in freshwater environments and have the potential to transform community and ecosystem structure. Predatory centrarchid fishes and American Bullfrogs (Lithobates catesbeianus Shaw, 1802 previously Rana catesbeiana) are both widespread aquatic invaders implicated in native amphibian declines. In lowland ecosystems, co-occurrence between native and nonnative amphibian and fish taxa is common; however, the mechanisms that facilitate their co-occurrence are poorly studied. Stable isotope analysis offers a tool to examine trophic interactions among native and nonnative taxa, including predation, competition, and shifting food resource availability, which may provide mechanistic insight into the drivers of co-occurrence. In this study, we used stable isotopes (δ13C and δ15N) to determine how the trophic structure of native fishes and amphibians differs between waterbodies with and without nonnative centrarchid fishes and bullfrogs across a floodplain in southwestern Washington, USA. We hypothesized that native species alter their feeding strategies to reduce niche overlap with nonnative taxa. In the presence of nonnative taxa, Three-spine Stickleback (Gasterosteus aculeatus Linnaeus, 1758), all native larval salamander species (Ambystoma gracile Baird, 1859 and Ambystoma macrodactylum Baird, 1850), and 1 of 2 native larval frog species (Rana aurora Baird and Girard, 1852) exhibited shifts in food resources or trophic position. Despite trophic differences, only 1 species (A. macrodactylum) had a smaller niche size in the presence of nonnatives. The observed trophic shifts reflect changes in habitat or food resources, which may reduce competition or predation and promote co-occurrence between nonnative and native taxa. Our results suggest that the co-occurrence of native and nonnative amphibians and fishes in lowland floodplain habitats may be facilitated by a broad range of food resources and complex habitat structure.\",\"PeriodicalId\":48926,\"journal\":{\"name\":\"Freshwater Science\",\"volume\":\"41 1\",\"pages\":\"327 - 341\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Freshwater Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/720137\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Freshwater Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/720137","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Freshwater floodplain habitats buffer native food webs from negative effects of nonnative centrarchids and bullfrogs
Species introductions are common in freshwater environments and have the potential to transform community and ecosystem structure. Predatory centrarchid fishes and American Bullfrogs (Lithobates catesbeianus Shaw, 1802 previously Rana catesbeiana) are both widespread aquatic invaders implicated in native amphibian declines. In lowland ecosystems, co-occurrence between native and nonnative amphibian and fish taxa is common; however, the mechanisms that facilitate their co-occurrence are poorly studied. Stable isotope analysis offers a tool to examine trophic interactions among native and nonnative taxa, including predation, competition, and shifting food resource availability, which may provide mechanistic insight into the drivers of co-occurrence. In this study, we used stable isotopes (δ13C and δ15N) to determine how the trophic structure of native fishes and amphibians differs between waterbodies with and without nonnative centrarchid fishes and bullfrogs across a floodplain in southwestern Washington, USA. We hypothesized that native species alter their feeding strategies to reduce niche overlap with nonnative taxa. In the presence of nonnative taxa, Three-spine Stickleback (Gasterosteus aculeatus Linnaeus, 1758), all native larval salamander species (Ambystoma gracile Baird, 1859 and Ambystoma macrodactylum Baird, 1850), and 1 of 2 native larval frog species (Rana aurora Baird and Girard, 1852) exhibited shifts in food resources or trophic position. Despite trophic differences, only 1 species (A. macrodactylum) had a smaller niche size in the presence of nonnatives. The observed trophic shifts reflect changes in habitat or food resources, which may reduce competition or predation and promote co-occurrence between nonnative and native taxa. Our results suggest that the co-occurrence of native and nonnative amphibians and fishes in lowland floodplain habitats may be facilitated by a broad range of food resources and complex habitat structure.
期刊介绍:
Freshwater Science (FWS) publishes articles that advance understanding and environmental stewardship of all types of inland aquatic ecosystems (lakes, rivers, streams, reservoirs, subterranean, and estuaries) and ecosystems at the interface between aquatic and terrestrial habitats (wetlands, riparian areas, and floodplains). The journal regularly features papers on a wide range of topics, including physical, chemical, and biological properties of lentic and lotic habitats; ecosystem processes; structure and dynamics of populations, communities, and ecosystems; ecology, systematics, and genetics of freshwater organisms, from bacteria to vertebrates; linkages between freshwater and other ecosystems and between freshwater ecology and other aquatic sciences; bioassessment, conservation, and restoration; environmental management; and new or novel methods for basic or applied research.