氧化亚铜纳米立方体与壳聚糖纳米颗粒的合成及其在降解对硝基苯酚中的应用

Q4 Chemistry
Tran Thi Bich Quyen, Ngo Nguyen Tra My, Do Thi Thuy Ngan, Duy Toan Pham, Doan Van Hong Thien
{"title":"氧化亚铜纳米立方体与壳聚糖纳米颗粒的合成及其在降解对硝基苯酚中的应用","authors":"Tran Thi Bich Quyen, Ngo Nguyen Tra My, Do Thi Thuy Ngan, Duy Toan Pham, Doan Van Hong Thien","doi":"10.5564/mjc.v22i48.1564","DOIUrl":null,"url":null,"abstract":"For the first time, cuprous oxide nanocubes (Cu2O NCBs) were successfully combined with chitosan nanoparticles (CS NPs) to generate Cu2O NCBs/CS NPs composites material with highly optical property and photocatalytic activity using a simple and eco-friendly synthetic approach at room temperature for 30 min. The synthesized Cu2O NCBs NPs/CS NPs were determined characterizations by Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X – ray Diffraction (XRD),  Transmission Electron Microscope (TEM) and Energy-dispersive X-ray spectroscopy (EDX). Results show that the Cu2O NCBs/CS NPs composites have an average particle size of ~3-5 nm; in which, Cu2O has the form of nanocubes (Cu2O NCBs) with size ~3-4 nm and chitosan nanoparticles with spherical shape (CS NPs) with size ~4-5 nm. In addition, the percent (%) composition of elements present in Cu2O NCBs/CS NPs composites material have been obtained respective: Cu (23.99%), O (38.18%), and C (33.61%). Moreover, Cu2O NCBs/CS NPs composites material was also investigated for photocatalytic activity applied in p-nitrophenol degradation. The obtained results showed that the catalytic capability of Cu2O NCBs/CS NPs for p-nitrophenol reduction reached the highest efficiency >55% in the treatment time of 25 min, and this efficiency was higher than that result of using ZnO@chitosan nanoparticles (ZnO@CS NPs) catalyst under the same conditions for comparison.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of cuprous oxide nanocubes combined with chitosan nanoparticles and its application to p-nitrophenol degradation\",\"authors\":\"Tran Thi Bich Quyen, Ngo Nguyen Tra My, Do Thi Thuy Ngan, Duy Toan Pham, Doan Van Hong Thien\",\"doi\":\"10.5564/mjc.v22i48.1564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, cuprous oxide nanocubes (Cu2O NCBs) were successfully combined with chitosan nanoparticles (CS NPs) to generate Cu2O NCBs/CS NPs composites material with highly optical property and photocatalytic activity using a simple and eco-friendly synthetic approach at room temperature for 30 min. The synthesized Cu2O NCBs NPs/CS NPs were determined characterizations by Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X – ray Diffraction (XRD),  Transmission Electron Microscope (TEM) and Energy-dispersive X-ray spectroscopy (EDX). Results show that the Cu2O NCBs/CS NPs composites have an average particle size of ~3-5 nm; in which, Cu2O has the form of nanocubes (Cu2O NCBs) with size ~3-4 nm and chitosan nanoparticles with spherical shape (CS NPs) with size ~4-5 nm. In addition, the percent (%) composition of elements present in Cu2O NCBs/CS NPs composites material have been obtained respective: Cu (23.99%), O (38.18%), and C (33.61%). Moreover, Cu2O NCBs/CS NPs composites material was also investigated for photocatalytic activity applied in p-nitrophenol degradation. The obtained results showed that the catalytic capability of Cu2O NCBs/CS NPs for p-nitrophenol reduction reached the highest efficiency >55% in the treatment time of 25 min, and this efficiency was higher than that result of using ZnO@chitosan nanoparticles (ZnO@CS NPs) catalyst under the same conditions for comparison.\",\"PeriodicalId\":36661,\"journal\":{\"name\":\"Mongolian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mongolian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5564/mjc.v22i48.1564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mongolian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5564/mjc.v22i48.1564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1

摘要

本文首次成功地将氧化亚铜纳米立方(Cu2O NCBs)与壳聚糖纳米颗粒(CS NPs)结合,在室温下合成了具有高光学性能和光催化活性的Cu2O NCBs/CS NPs复合材料,并通过紫外可见光谱(UV-vis)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD),透射电子显微镜(TEM)和能量色散X射线能谱(EDX)。结果表明:Cu2O NCBs/CS NPs复合材料的平均粒径为~3 ~ 5 nm;其中,Cu2O以尺寸为~3 ~4 nm的纳米立方体(Cu2O ncb)和尺寸为~4 ~ 5 nm的球形壳聚糖纳米颗粒(CS NPs)的形式存在。此外,还得到了Cu2O NCBs/CS NPs复合材料中元素组成的百分比分别为:Cu(23.99%)、O(38.18%)和C(33.61%)。此外,还研究了Cu2O NCBs/CS NPs复合材料在对硝基苯酚降解中的光催化活性。结果表明,Cu2O NCBs/CS NPs对对硝基苯酚的还原效率在处理时间为25 min时达到了最高效率>55%,且该效率高于相同条件下使用ZnO@chitosan纳米颗粒(ZnO@CS NPs)催化剂的还原效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of cuprous oxide nanocubes combined with chitosan nanoparticles and its application to p-nitrophenol degradation
For the first time, cuprous oxide nanocubes (Cu2O NCBs) were successfully combined with chitosan nanoparticles (CS NPs) to generate Cu2O NCBs/CS NPs composites material with highly optical property and photocatalytic activity using a simple and eco-friendly synthetic approach at room temperature for 30 min. The synthesized Cu2O NCBs NPs/CS NPs were determined characterizations by Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X – ray Diffraction (XRD),  Transmission Electron Microscope (TEM) and Energy-dispersive X-ray spectroscopy (EDX). Results show that the Cu2O NCBs/CS NPs composites have an average particle size of ~3-5 nm; in which, Cu2O has the form of nanocubes (Cu2O NCBs) with size ~3-4 nm and chitosan nanoparticles with spherical shape (CS NPs) with size ~4-5 nm. In addition, the percent (%) composition of elements present in Cu2O NCBs/CS NPs composites material have been obtained respective: Cu (23.99%), O (38.18%), and C (33.61%). Moreover, Cu2O NCBs/CS NPs composites material was also investigated for photocatalytic activity applied in p-nitrophenol degradation. The obtained results showed that the catalytic capability of Cu2O NCBs/CS NPs for p-nitrophenol reduction reached the highest efficiency >55% in the treatment time of 25 min, and this efficiency was higher than that result of using ZnO@chitosan nanoparticles (ZnO@CS NPs) catalyst under the same conditions for comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mongolian Journal of Chemistry
Mongolian Journal of Chemistry Materials Science-Materials Chemistry
CiteScore
1.10
自引率
0.00%
发文量
5
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信