{"title":"分子扶手椅石墨烯纳米带气体探测器的建模与仿真","authors":"Alireza Tashakori, A. Rostami, M. M. Karkhanehchi","doi":"10.1364/optcon.486370","DOIUrl":null,"url":null,"abstract":"Optical detectors are essential for gas detection using optical technology. This study introduces an armchair graphene nanoribbon (AGNR) molecular optical gas detector with two conjugated molecular elements and a non-conjugated interface for gas detection using optical technology. The detector absorbs light and generates peaks in the current-voltage curve that correspond to gas concentration and the Raman frequency spectrum. The detector exhibits negative resistances controlled by input light frequency, suitable for high-frequency oscillators. Multiple gases can be simultaneously identified and monitored using the detector. The detector was analyzed using the non-equilibrium Green function method and offers high-speed, accurate selectivity, precise gas detection, and reproducibility with multiple electrical outputs.","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and simulation of molecular armchair graphene nanoribbons as a gas detector\",\"authors\":\"Alireza Tashakori, A. Rostami, M. M. Karkhanehchi\",\"doi\":\"10.1364/optcon.486370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical detectors are essential for gas detection using optical technology. This study introduces an armchair graphene nanoribbon (AGNR) molecular optical gas detector with two conjugated molecular elements and a non-conjugated interface for gas detection using optical technology. The detector absorbs light and generates peaks in the current-voltage curve that correspond to gas concentration and the Raman frequency spectrum. The detector exhibits negative resistances controlled by input light frequency, suitable for high-frequency oscillators. Multiple gases can be simultaneously identified and monitored using the detector. The detector was analyzed using the non-equilibrium Green function method and offers high-speed, accurate selectivity, precise gas detection, and reproducibility with multiple electrical outputs.\",\"PeriodicalId\":74366,\"journal\":{\"name\":\"Optics continuum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcon.486370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcon.486370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Modeling and simulation of molecular armchair graphene nanoribbons as a gas detector
Optical detectors are essential for gas detection using optical technology. This study introduces an armchair graphene nanoribbon (AGNR) molecular optical gas detector with two conjugated molecular elements and a non-conjugated interface for gas detection using optical technology. The detector absorbs light and generates peaks in the current-voltage curve that correspond to gas concentration and the Raman frequency spectrum. The detector exhibits negative resistances controlled by input light frequency, suitable for high-frequency oscillators. Multiple gases can be simultaneously identified and monitored using the detector. The detector was analyzed using the non-equilibrium Green function method and offers high-speed, accurate selectivity, precise gas detection, and reproducibility with multiple electrical outputs.